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"Without Philip Wright

would there have been causal DAGs?

Who can really say?"

– Kei Hirano.
∗

In this chapter we discuss various models with unobserved

confounders, where the adjustment strategies we have discussed

no longer work. We start with sensitivity analysis of causal

inference to the presence of unobserved confounders. Then

we discuss identification of causal effects when instrumental

variables or proxy controls are available.

∗
Sewall Wright, son, and Philip Wright, father, were responsible for some

of the greatest ideas in causal inference. Sewall Wright invented causal

path diagrams (linear DAGs), and Philip Wright wrote down DAGs for

supply-demand equations, proposed IV methods for their identification,

and even proposed weather conditions as instruments. Just one of these

contributions would probably be enough to get a QJE publication in 1970s

and later, but it was not good enough in 1926 or so. Philip Wright is a

(causal) parent of Sewall Wright, so he is one of the causes of DAGs (hence

the haiku).
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𝐷 𝑌

Figure 12.1: 𝐷 causes 𝑌

𝐴

𝐷 𝑌

Figure 12.2: 𝐷 and 𝑌 are caused by

a latent factor 𝐴

𝑍 𝐷 𝑌

𝐴

Figure 12.3: A DAG with Latent

Confounder 𝐴 and Instrument 𝑍.

𝐷 𝑌

𝐴 𝑆𝑄

Figure 12.4: A DAG with two prox-

ies for latent confounders.

12.1 The Difficulty of Causal Inference

with an Unobserved Confounder

"All happy statisticians are happy in their own way;

but all the unhappy ones are all alike — they all

do causal inference with observational data”. L.

Tolstoy in Anna Karenina (Source: Twitter)

Here we consider models with an unobserved confounding

variable. The presence of unobserved confounding variables

complicates identification of causal effects. Without further

assumptions it is impossible to identify causal effects in a

setting with unobserved confounding variables.

For example, consider the following two basic models shown

in the margin figure, where we can think of 𝑌 as wages, 𝐷 as

education, and 𝐴 as latent ability.

If 𝐴 is not observed, the two models in Figures 12.1 and 12.2

are statistically indistinguishable from each other. In the first

model 𝐷 has a causal effect on 𝑌, and in the second it does

not. Even with strong restrictions, as in Gaussian linear SEMs,

the observed correlation between 𝐷 and 𝑌 can always be ra-

tionalized either as a causal effect of 𝐷 on 𝑌 or the result of a

common cause 𝐴 (homework). This observation applies more

generally. While we cannot precisely pin down causal effects in

these cases, we can still learn about causal effects by performing

sensitivity analysis if we are willing to assume a bound on the

strength of unobserved confounders. We discuss a practical and

intuitive approach to sensitivity analysis in Section 12.2.

We may also make progress in learning causal effects in the

presence of unobserved confounders by considering the use

of instrumental variables (IVs) – additional random vectors

𝑍 that create exogenous variation in 𝐷. This approach was

introduced by Philip Wright in 1928 [1]. The use of instruments

renders many linear ASEMs identifiable, allowing us to perform

inference on structural effects 𝐷 → 𝑌. Some nonlinear ASEMs

also become identifiable, though identification still fails for

completely unrestricted nonlinear models. We discuss the use

of instruments in Sections 12.3-12.4.

A related set of problems is when we observe multiple proxy

measurements of the latent confounder 𝐴. For example, we

may observe 𝑆, the SAT score, and 𝑄, the ACT score, which

may both be proxies for latent confounder, 𝐴, ability. Note that

conditioning on 𝑄 and 𝑆 does not block the backdoor path

𝑌 ← 𝐴→ 𝐷. Hence we cannot use the regression adjustment

https://twitter.com/VC31415/status/1348354738501378048
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𝐷 𝑌

𝑋 𝐴

Figure 12.5: 𝑋 are observed con-

founders, and 𝐴 are unobserved

confounders.

method for identification of 𝐷 → 𝑌. However, this problem is

related to IVs, because we can effectively use one measurement

in place of 𝐴 and instrument it with another measurement to

deal with the measurement error. This process can provide

identification of the main effect 𝐷 → 𝑌. In other words, we can

use instrumental variable regression of 𝑌 on 𝐷 and 𝑆, using

𝐷 and 𝑄 as technical instrumental variables. This approach

was introduced by Zvi Griliches in 1977 [2]. This model has

also been extensively studied for nonlinear models as well, e.g.,

Miao et al. [3] and Deaner [4], especially in the recent literature.

We discuss proxy approaches in Section 12.6.

12.2 Impact of Confounders on Causal

Effect Identification and Sensitivity

Analysis

Example 12.2.1 (Partially Linear SEM) Consider the SEM

𝑌 := 𝛼𝐷 + 𝛿𝐴 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛾𝐴 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where, conditional on 𝑋, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝐴 are both mean zero and

mutually uncorrelated. We further normalize

E[𝜖2

𝐴] = 1.

The key structural parameter is 𝛼:

𝛼 = 𝜕𝑑𝑌(𝑑)

where

𝑌(𝑑) := (𝑌 : 𝑑𝑜(𝐷 = 𝑑)).

To give context to our example, we can interpret𝑌 as earnings,𝐷

as education,𝐴 as ability, and𝑋 as a set of observed background

variables. In this example, we can interpret 𝛼 as the returns to

schooling.

We start by applying the partialling out operator to get rid of the

𝑋’s in all of the equations. Define the partialling out operation

of any random vector 𝑉 with respect to another random vector

𝑋 as the residual that is left after subtracting the best predictor



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 320

1: [6] recently obtained a similar

result for fully nonlinear models.

of 𝑉 given 𝑋:

�̃� = 𝑉 − E[𝑉 | 𝑋].

If 𝑓 ’s are linear, we can replace E[𝑉 | 𝑋] by linear projection.

After partialling out, we have a simplified system:

�̃� := 𝛼�̃� + 𝛿�̃� + 𝜖𝑌 ,

�̃� := 𝛾�̃� + 𝜖𝐷 ,

�̃� := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , and 𝜖𝐴 are uncorrelated.

Then the projection of �̃� on �̃� recovers

𝛽 = E[�̃��̃�]/E[�̃�2] = 𝛼 + 𝜙,

where

𝜙 = 𝛿𝛾/E
[
(𝛾2 + 𝜖2

𝐷)
]
,

is the omitted confounder bias. Omitted confounder bias is also of-

ten referred to as omitted variables

bias.

The formula follows from inserting the expression for �̃� into

the definition of 𝛽 and then simplifying the resulting expression

using the assumptions on the 𝜖’s.

We can use this formula to bound 𝜙 directly by making as-

sumptions on the size of 𝛿 and 𝛾. An alternative approach can

be based on the following characterization, based on partial

𝑅2
’s. This characterization essentially follows from Cinelli and

Hazlett [5], with the slight difference that we have adapted the

result to the partially linear model.
1

Theorem 12.2.1 (Omitted Confounder Bias in Terms of Partial

𝑅2
’s) In the setting given in Example 12.2.1,

𝜙2 =

𝑅2

�̃�∼�̃�|�̃�𝑅
2

�̃�∼�̃�

(1 − 𝑅2

�̃�∼�̃�)
E

[
(�̃� − 𝛽�̃�)2

]
E

[
(�̃�)2

] ,

where 𝑅2

𝑉∼𝑊 |𝑋 denotes the population 𝑅2 in the linear regression
of 𝑉 on𝑊 , after partialling out linearly 𝑋 from 𝑉 and𝑊 .

Therefore, if we place bounds on how much of the variation in

�̃� and in �̃� the unobserved confounder �̃� is able to explain, we

can bound the omitted confounder bias by√
𝜙2.
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Example 12.2.2 We consider an empirical example based on

data surrounding the Darfur war. DML Sensitivity R Notebook car-

ries out sensitivity analysis based

on DML and the R package Sense-

makr for the analysis of the Darfur

wars data.

Specifically, we are inter-

ested in the effect of having experienced direct war violence

on attitudes towards peace. The observed controls explain

12-15% of the variance of 𝑌, beyond what’s explained by the

"treatment" variable, and 1% of the variance of treatment 𝐷.

Therefore, suppose we are willing to accept that

𝑅2

�̃�∼�̃�|�̃� ≤ .15, 𝑅2

�̃�∼�̃� ≤ .01;

that is, we have a latent confounder that is no stronger than

the observed controls for predicting 𝑌 and for predicting 𝐷.

Then, the upper/lower bound on 𝛼 is given by

𝛽 ± 𝜙, 𝜙2 =
.0015

.99

E

[
(�̃� − 𝛽�̃�)2

]
E

[
�̃�2

] .

The estimated 𝛽 is about .1. Plugging in estimates of E

[
(�̃� − 𝛽�̃�)2

]
and E[(�̃�)2] yields an estimated lower bound on 𝛼 of around

.074. In Figure 12.6, we show the combination of all partial

𝑅2
such that the bias is less than .026. It shows that our

conclusions about causal effects are not very sensitive to the

presence of unknown confounders whose power is limited

by the stated assumptions.

https://www.kaggle.com/victorchernozhukov/sensitivity-analysis-with-sensmakr-and-debiased-ml
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Figure 12.6: Sensitivity contour

plots: The graph shows values

of 𝑅2

�̃�∼�̃� |�̃� and 𝑅2

�̃�∼�̃� that give

a given value of the bias |�̂� | =
.026.

𝑍 𝐷 𝑌

𝑋 𝐴

Figure 12.7: An IV model with

observed and unobserved con-

founders.

12.3 Partially Linear IV Models

When instrumental variables are available, it becomes possible

to point identify causal effects in partially linear models and

certain types of causal effects in nonlinear models. Here we

begin with partially linear models.

A Wage Equation with Unobserved Ability

Example 12.3.1 (Returns to Education with Omitted Ability;

Generalization of Griliches, 1977 [2]) Consider the ASEM

𝑌 := 𝛼𝐷 + 𝛿𝐴 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛽𝑍 + 𝛾𝐴 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where, conditional on 𝑋, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 have mean zero and

are mutually uncorrelated.

We can interpret𝑌 as earnings,𝐷 as education, 𝐴 as ability, 𝑍
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as an observed shifter of education, and𝑋 as a set of observed

background variables. The key structural parameter is 𝛼, the

returns to schooling, i.e.

𝛼 = 𝜕𝑑𝑌(𝑑),

where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

Examples of instruments for schooling, 𝑍, that have appeared

in the literature include

▶ distance to college (Card [7]),

▶ compulsory schooling laws (Angrist [8]),

▶ offer to participate/offer to treat in a training program

(many studies), and

▶ subsidies to finance education (Griliches, Heckman).

We apply the partialling-out operator to get rid of the 𝑋’s in

all of the equations. As before, we define the partialling out

operation of any random vector 𝑉 with respect to another

random vector 𝑋 as the residual that is left after subtracting the

best predictor of 𝑉 given 𝑋:

�̃� = 𝑉 − E[𝑉 | 𝑋].

If 𝑓 ’s are linear, we replace E[𝑉 | 𝑋]with linear projection.

After partialling-out, we have a simplified system.

�̃� := 𝛼�̃� + 𝛿�̃� + 𝜖𝑌 ,

�̃� := 𝛽�̃� + 𝛾�̃� + 𝜖𝐷 ,

�̃� := 𝜖𝑍 ,

�̃� := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍, and 𝜖𝐴 are uncorrelated.

We immediately obtain the following result:

Theorem 12.3.1 In Example 12.3.1, we can rewrite an econometric
measurement model for identification of 𝛼:

�̃� := 𝛼�̃� +𝑈, 𝑈 ⊥ �̃�,

where𝑈 = 𝛿�̃� + 𝜖𝑌 . Alternatively, we can equivalently identify 𝛼
using the moment restriction

E

[
(�̃� − 𝛼�̃�)�̃�

]
= 0.
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�̃� �̃� �̃�

�̃�

Figure 12.8: DAG corresponding

to Figure 12.7 after partialling out

observed confounder 𝑋.

�̃� �̃� �̃�

𝜖𝑑

Figure 12.9: A DAG for aggregate

demand, with the latent node 𝜖𝑑

representing the demand shock

The identification of 𝛼 follows from solving this equation,

𝛼 = E[�̃��̃�]/E[�̃��̃�],

provided the instruments are relevant: E[�̃��̃�] ≠ 0 or 𝛽 ≠ 0.

Remark 12.3.1 (Neyman Orthgonality and DML) The target

parameter 𝛼 is Neyman orthogonal with respect to nuisance

parameters – the regression functions E[𝑌 | 𝑋], E[𝐷 | 𝑋],
and E[𝑍 | 𝑋]. Therefore we can use DML for learning and

performing statistical inference on the parameter 𝛼.

Wright’s Causal Path Derivation

Starting from the DAG given in Figure 12.7, we obtain Figure

12.8 after partialling out.

Philip Wright (1928) [1] observed that the structural param-

eter 𝛽𝛼, the effect �̃�→ �̃�, is identified from the projection

of �̃� ∼ �̃�:

𝛽𝛼 = E[�̃��̃�]/E[�̃�2].

The structural parameter 𝛽, the effect of𝑍→ 𝐷, is identified

from the projection of �̃� ∼ �̃�:

𝛽 = E[�̃��̃�]/E[�̃�2].

𝛼, the effect of 𝐷 → 𝑌, is then identified by the ratio of the

two provided 𝛽 ≠ 0:

𝛼 =
𝛽𝛼

𝛽
= E[�̃��̃�]/E[�̃��̃�].

Aggregate Market Demand

Let’s apply our approach to a canonical example in economics:

the identification of the price elasticity of demand using a

supply shifter as an instrument.

Example 12.3.2 (Market Demand; Generalization of P. Wright,
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1928 [1]) Consider the ASEM

𝑌 := 𝛼𝐷 + 𝑓𝑌(𝑋) + 𝜖𝑑 ,

𝐷 := 𝛽𝑍 + 𝑓𝐷(𝑋) + 𝜌𝜖𝑑 + 𝛾𝜖𝑠 ,

𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍

where 𝜖𝑑, 𝜖𝑠 and 𝜖𝑍 are mean zero and uncorrelated condi-

tional on 𝑋. In this example, 𝑌 is (log) demand, 𝐷 is (log)

price,𝑍 is an observed supply shifter,𝑋 is a vector of observed

demand shifters, 𝜖𝑑 is a demand shock, and 𝜖𝑠 is a supply

shock. The key parameter is 𝛼, the price elasticity of demand:

𝛼 = 𝜕𝑑𝑌(𝑑),

where 𝑌(𝑑) := (𝑌 : 𝑑𝑜(𝐷 = 𝑑)). Here we focus on only the

demand side of the market and do not attempt to explicitly

model the supply side. In econometrics, the set-up here is

sometimes referred to as a limited
information model or formulation

because we are focusing on iden-

tifying only a single equation in a

more complicated underlying sys-

tem.

Example 12.3.2 is equivalent to the previous Example 12.3.1

– set 𝐴 = 𝜖𝑑, 𝜖𝑌 = 0, 𝜖𝑠 = 𝜖𝐷 , and so on. Hence, the

identification method is the same as before.

Limits of Average Causal Effect Identification

under Partial Linearity

The result in Theorem 12.3.1 extends beyond the partially linear

setting presented in Example 12.3.1 to the following non-linear

structural equation model:

Example 12.3.3 (Partially Linear Outcome IV Model) Con-

sider the ASEM

𝑌 := 𝑔𝑌(𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌),
𝐷 := 𝑓𝐷(𝑍, 𝑋, 𝐴, 𝜖𝐷),
𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍),
𝐴 := 𝑓𝐴(𝑋, 𝜖𝐴),
𝑋 := 𝜖𝑋 ,

where, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 are exogenous and mutually indepen-

dent. The key structural parameter is:

𝛼 := E[𝜕𝑑𝑌(𝑑)] = E[𝑔𝑌(𝜖𝑌)],
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where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

This parameter is typically referred to as the average marginal

effect of the treatment.

Theorem 12.3.1 extends almost as is to this more general non-

linear structural equation model.

Theorem 12.3.2 In Example 12.3.3, we can identify 𝛼 using the
moment restriction

E

[
(�̃� − 𝛼�̃�)�̃�

]
= 0.

The identification of 𝛼 follows from solving this equation,

𝛼 = E

[
�̃��̃�

]
/E

[
�̃��̃�

]
,

provided the instruments are relevant: E[�̃��̃�] ≠ 0.

Note that the non-linear structural equation model in Exam-

ple 12.3.3 imposes extra assumptions on the structural response

function of the outcome 𝑌. Thus our identification argument

imposes more conditions on the structural equations than the

ones that can be encoded via a DAG. Such auxiliary assumptions

are required for identification of average treatment effects with

instruments.

In particular, the identification argument relies on the fact that

the unobserved confounder 𝐴 enters in an additively separable

manner in the outcome equation. If for instance, 𝐴was an input

to the function 𝑔, i.e. 𝑌 := 𝑔𝑌(𝐴, 𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌), then the

quantity identified by the moment restriction in Theorem 12.3.2

would not correspond to an average treatment effect. In this case,

the unobserved confounder creates heterogeneity in the treat-

ment effect and also heterogeneity in the effect of the instrument

on the treatment, typically referred to as the "compliance" (i.e.,

the correlation between 𝑍 and 𝐷 varies with 𝐴). This property

is what renders the ratio quantity 𝛼 = E

[
�̃��̃�

]
/E

[
�̃��̃�

]
, invalid

for the causal estimand of interest.

In fact, it is the joint heterogeneity in both the outcome relation-

ship and the compliance relationship that causes the problem.

We show next that we could allow for a much more complex

outcome model as long as the effect of the instrument on the

treatment (compliance) is not heterogeneous in 𝐴 or 𝑋.

Example 12.3.4 (Partially Linear Compliance IV Model) Con-
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sider the ASEM

𝑌 := 𝑔𝑌(𝐴, 𝑋, 𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌),
𝐷 := 𝑔𝐷(𝜖𝐷)𝑍 + 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷),
𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍 ,

𝐴 := 𝑓𝐴(𝑋, 𝜖𝐴),
𝑋 := 𝜖𝑋 ,

where, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 are exogenous and mutually indepen-

dent. The key structural parameter is:

𝛼 := E[𝜕𝑑𝑌(𝑑)] = E[𝑔(𝐴, 𝑋, 𝜖𝑌)],

where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

Theorem 12.3.3 In Example 12.3.4, we can identify 𝛼 using the
moment restriction

E

[
(�̃� − 𝛼�̃�)�̃�

]
= 0.

The identification of 𝛼 follows from solving this equation,

𝛼 = E

[
�̃��̃�

]
/E

[
�̃��̃�

]
,

provided the instruments are relevant: E[�̃��̃�] ≠ 0.

Thus, we see that we need that either the effect of education on

wages is not heterogeneous in the unobserved ability variable

𝐴 or that the effect of the observed education shifter 𝑍 (e.g.

distance to college) on education 𝐷 is not heterogeneous in the

unobserved ability variable to use the identification strategies

presented in this section in the context of our education exam-

ple. In Section 12.4, we will investigate what causal quantities

are identifiable even in non-linear structural equation models,

where the unobserved confounder creates heterogeneity in both

the treatment effect and in the compliance behavior.

Remark 12.3.2 (Effect heterogeneity based on observables)

We note that allowing for 𝑋 to enter the 𝑔𝑌 or 𝑔𝐷 function

in Example 12.3.3 and Example 12.3.4 (i.e. allowing for the

treatment effect or compliance, i.e. effect of instrument on

treatment, to vary with𝑋), is a more benign extension because

𝑋 is an observed variable. In this case, we can repeat the

identification strategies in this section, conditional on 𝑋 , and
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𝑍 𝐷 𝑌

𝑋 𝐴

Figure 12.10: LATE models. Green

arrow denotes a monotone func-

tional relation.

we can show with similar arguments that

𝛽(𝑋) := E[𝜕𝑑𝑌(𝑑) | 𝑋] =
E[�̃��̃� | 𝑋]
E[�̃��̃� | 𝑋]

. (12.3.1)

Then we can simply average these conditional estimates to

get the average marginal effect:

𝛼 = E[𝛽(𝑋)]. (12.3.2)

Such an identification strategy was initiated in [9, 10] and was

also recently used in the context of DML estimators [11–13]. In

particular, the following moment condition that identifies 𝛼,

E

[
𝛽(𝑋) +

(�̃� − 𝛽(𝑋)�̃�)�̃�
E[�̃��̃� | 𝑋]

− 𝛼

]
= 0, (12.3.3)

is Neyman orthogonal with respect to the nuisance functions

𝛽(𝑋) and 𝛾(𝑋) := E[�̃��̃� | 𝑋]. We note that this identification

strategy remains valid even if in Example 12.3.4 the instrument

equation is fully non-linear, i.e. 𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍).

12.4 Nonlinear IV Models

Once we consider nonlinear models, identification becomes a

much more delicate matter. We first consider the local average

treatment effect (LATE) model, and then we turn to quantile

models.

The LATE Model

An important nonlinear IV model is the local average treatment

effect model (LATE), proposed by Imbens and Angrist [14].

Example 12.4.1 (LATE) Consider the SEM, where

𝑌 := 𝑓𝑌(𝐷, 𝑋, 𝐴, 𝜖𝑌)
𝐷 := 𝑓𝐷(𝑍, 𝑋, 𝐴, 𝜖𝐷) ∈ {0, 1},
𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍) ∈ {0, 1},
𝑋 := 𝜖𝑋 , 𝐴 = 𝜖𝐴 ,

where 𝜖’s are all independent, and

𝑧 ↦→ 𝑓𝐷(𝑧, 𝐴, 𝑋, 𝜖𝐷) is weakly increasing (weakly monotone).
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2: In the model with no 𝑋 the ratio

�1/�2 is equivalent to Wright’s [1]

IV estimand.

Suppose the instrument𝑍 is an offer to participate in a training

program and that 𝐷 is the actual endogenous participation

in the training program. Participation in the program may

depend on unobservables 𝐴, such as ability or perseverence,

that also affect the eventual outcome 𝑌. We can also have

background exogenous covariates 𝑋 in the model.

Define

𝑌(𝑑) := 𝑓𝑌(𝑑, 𝑋, 𝐴, 𝜖𝑌) and 𝐷(𝑧) := 𝑓𝐷(𝑧, 𝑋, 𝐴, 𝜖𝐷)

as the potential outcomes that result from applying fix-interventions

in the corresponding equations from Example 12.4.1.

The model allows us to identify the local average treatment

effect (LATE), defined as

� = E[𝑌(1) − 𝑌(0) | 𝐷(1) > 𝐷(0)],

where {𝐷(1) > 𝐷(0)} is the compliance event, where switching

instrument value from 𝑍 = 0 to 𝑍 = 1 induces participation.

Therefore LATE measures the average treatment effect condi-

tional on compliance.

Theorem 12.4.1 In the LATE model, we have that � is identified
by the ratio of two statistical parameters,

� = �1/�2,

where

�1 := E [E[𝑌 | 𝑋, 𝑍 = 1] − E[𝑌 | 𝑋, 𝑍 = 0]] ,

and

�2 := E [E[𝐷 | 𝑋, 𝑍 = 1] − E[𝐷 | 𝑋, 𝑍 = 0]] ,

provided that the instrument 𝑍 is relevant, �2 > 0, and 𝑍 has full
conditional support – namely 0 < 𝑃(𝑍 = 1 | 𝑋) < 1. Moreover,
�2 identifies the probability of compliance:

�2 = P[𝐷(1) > 𝐷(0)].

The result has an intuitive interpretation.
2

In the event of

compliance, the instrument moves the treatment as if experi-

mentally, which induces quasi-experimental variation in the

outcome. We measure the probability of compliance with �2
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𝑍 𝐷 𝑌

𝑋 𝜖𝑌

Figure 12.11: IV Quantile Model.

The green arrow represents a

strictly monotonic effect.

and the average induced changes in outcome by �1. Taking the

ratio is then like conditioning on the compliance event. See the

proof in Section 12.A for details.

The ratio can be recognized as the ratio of average treatment

effects of 𝑍 on 𝑌 and 𝐷,

�1 = 𝐴𝑇𝐸(𝑍→ 𝑌),

�2 = 𝐴𝑇𝐸(𝑍→ 𝐷).

This assertion follows from the application of the backdoor

criterion. Therefore in order to perform inference on LATE, we

can simply re-use the tools for performing inference on two

ATEs.

Remark 12.4.1 (DML for �1/�2) We can apply DML to obtain

�̂1 and �̂2 and then construct the estimator �̂ = �̂1/�̂2 via

the plug-in principle. This approach automatically has the

Neyman orthogonality property.

The IV Quantile Model
★

Another nonlinear IV model is the following model that ex-

ploits monotonicity in the unobservable shock in the outcome

equation to obtain identification.

Example 12.4.2 (IV Quantile Model) Consider the SEM

𝑌 = 𝑓𝑌(𝐷, 𝑋, 𝜖𝑌),
𝐷 = 𝑓𝐷(𝑍, 𝑋, 𝜖𝑌 , 𝜖𝐷),
𝑍 = 𝑓𝑍(𝑋, 𝜖𝑍),
𝑋 = 𝜖𝑋 ,

where 𝜖’s are all independent,

𝑓𝑌(𝐷, 𝑋, ·) : [0, 1] ↦→ ℝ is strictly increasing,

and 𝜖𝑌 is normalized to have uniform distribution on (0, 1).
The context could be given from the demand example, where

𝑌 is demand, 𝐷 price, 𝜖𝑌 a demand shock, 𝜖𝐷 a supply

shock; 𝑋 the set of background variables, and 𝑍 a set of

instrumental variables. The function 𝑓𝑌(𝑑, 𝑥, 𝑢) is the 𝑢-th

quantile of the structural function of 𝑓𝑌(𝑑, 𝑥, 𝜖𝑌), which is the

demand function in this context. For example, 𝑓𝑌(𝑑, 𝑥, 1/2) is
the median structural function.
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𝐷 𝑌

𝐴 𝑆𝑄

𝑋

Figure 12.12: A DAG with Controls

and Proxy Controls

The testable implication of the IV Quantile Model is the follow-

ing.

Theorem 12.4.2 In the IV Quantile Model, the testable moment
restriction is

P[𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) | 𝑍, 𝑋] = 𝑢,

for each 𝑢 ∈ (0, 1). There exist regularity conditions, analogous to
instrument relevance, under which the structural function 𝑓𝑌 is
identified from this restriction.

In practice, linear forms 𝑓𝑌(𝐷, 𝑋, 𝑢) = 𝛼(𝑢)′𝐷 + 𝛽(𝑢)′𝑋 are

often used. Adopting a linear functional form leads to method

of moments approaches such as the IV quantile regression for

performing inference on structural quantile functions. Code for IV Quantile Models can

be found here.

Remark 12.4.2 (DML for IVQR Models) The problem of

constructing DML for IVQR problems is considered open.

Neyman-orthogonal approaches for the partially linear IVQR

models are sketched out in the review [15] and may be a good

place to start.

12.5 Partially Linear SEMs with

Griliches-Chamberlain Proxy

Controls

Suppose we are interested in the causal effect of college educa-

tion on earnings in the presence of an unobserved confounder –

individual ability. Here we show that we can recover the effect

of college education on earnings in the presence of latent ability

using proxies for ability, but not the effect of ability itself.

Example 12.5.1 (Earnings with Omitted Ability; Griliches,

1977 [2]; Griliches and Chamberlain, 1977 [16]) Consider the

https://www.victorchernozhukov.com/code-and-notebooks
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�̃� �̃�

�̃� �̃��̃�

Figure 12.13: A DAG with Proxy

Controls After Partialling Out

3: Prove the result as a reading ex-

ercise. Substitute �̃� = (�̃� − 𝜖𝑆)/𝜙
in the first equation and use the

assumptions on the disturbances.

ASEM

𝑌 := 𝛼𝐷 + 𝛿𝐴 + �𝑆 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛾𝐴 + 𝛽𝑄 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝑄 := �𝐴 + 𝑓𝑄(𝑋) + 𝜖𝑄 ,

𝑆 := 𝜙𝐴 + 𝑓𝑆(𝑋) + 𝜖𝑆 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑄 , 𝜖𝑆 , 𝜖𝐴 , 𝜖𝑋 have mean zero and are uncorre-

lated conditional on 𝑋. Interpret 𝑌 as earnings, 𝐷 as college

degree, 𝐴 as ability, 𝑄 and 𝑆 as proxies of ability, and 𝑋 as

a set of observed background variables. Example proxies 𝑄

and 𝑆 are

▶ Q is test scores or grades in some period 𝑡0 and S is test

scores or grades at a later period 𝑡1.

The key structural parameter is 𝛼, the returns to schooling;

i.e.

𝛼 = 𝜕𝑑𝑌(𝑑),

where 𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).
After partialling out we are left with the DAG in Figure 12.13:

�̃� := 𝛼�̃� + 𝛿�̃� + ��̃� + 𝜖𝑌 ,

�̃� := 𝛾�̃� + 𝛽�̃� + 𝜖𝐷 ,

�̃� := ��̃� + 𝜖𝑄 ,

�̃� := 𝜙�̃� + 𝜖𝑆 ,

�̃� := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑄 , 𝜖𝑆 , 𝜖𝐴 are uncorrelated. The idea now is to

replace �̃� in the equation for �̃� with �̃�. Note that because 𝑆

enters the 𝑌 equation directly, we cannot consider using �̃�

to proxy for �̃�. We still cannot learn 𝛼 from the regression of

�̃� on �̃� and �̃� though as 𝑆 is an imperfect proxy for 𝐴. The

following result, which provides an IV approach to identify 𝛼,

is immediate via substitution.
3

Theorem 12.5.1 Assume that all variables in Example 12.5.1
are square-integrable. Then we have the following measurement
equation:

�̃� = 𝛼�̃� + �̄��̃� +𝑈, E[𝑈(�̃�, �̃�)] = 0,

𝑈 = −𝛿𝜖𝑆/𝜙 + 𝜖𝑌 ; �̄� = � + 𝛿/𝜙.
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𝐷 𝑌

𝐴 𝑆𝑄

Figure 12.14: A SEM with Proxy

Controls 𝑄 and 𝑆. Note that condi-

tioning on 𝑄 and 𝑆 does not block

the backdoor path 𝑌 ← 𝐴 → 𝐷,

hence we cannot use the regression

adjustment method for identifica-

tion of 𝐷 → 𝑌.

Here 𝛼 is identified from the moment condition E[𝑈(�̃�, �̃�)] = 0,
which is equivalent to using �̃� as an instrument for �̃�, provided
that �̃� and the best linear predictor of �̃� using �̃� and �̃� have
non-degenerate covariance matrix.

Note that �̃� here plays the role of a technical instrument for

�̃�. This approach recovers 𝛼, but not 𝛿. For inference, we can

employ the DML method for IV models; see also Chapter 13.

Remark 12.5.1 (Neyman Orthogonality and DML) The for-

mulation of the target parameter given above is Neyman-

orthogonal, and high-quality estimation and statistical in-

ference can be carried out using DML. In essence, we just

residualize the system, using cross-fitted residuals, and then

apply standard instrumental variable methods from econo-

metrics to perform inference on the structural parameter of

interest.

12.6 Nonlinear Models with Proxy

Controls
★

An important recent development is "proximal causal inference,"

which generalizes early work by Griliches and Chamberlain

[16].
†

Example 12.6.1 (Miao, Geng, and Tchetgen Tchetgen [3]) We

consider the following model encoded in the DAG in Figure

12.14:

𝑌 := 𝑓𝑌(𝐷, 𝑆, 𝐴, 𝜖𝑌),
𝐷 := 𝑓𝐷(𝐴, 𝑄, 𝜖𝐷),
𝑄 := 𝑓𝑄(𝐴, 𝜖𝑄),
𝑆 := 𝑓𝑆(𝐴, 𝜖𝑆),
𝐴 := 𝜖𝐴 ,

where 𝜖’s are mutually independent. We can endow the same

context to this model as in Example 12.5.1.

†
The most relevant papers include, amongst others, the stream of work by

Tchetgen Tchetgen and collaborators, as well as the dissertation work of

Deaner. Here we describe some results of the first group specialized to the

discrete case.
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Here we can introduce background exogenous controls 𝑋 in

each of the equations, but we don’t do so to save notation. Notice

that the model in Example 12.6.1 generalizes the Example 12.5.1

to the nonparametric case.

Assumption 12.6.1 In Example 12.6.1, assume

(a) Variables 𝑄, 𝑆 and 𝐴 are finitely discrete and take on the
same number of values.

(b) The matrix Π(𝑆 | 𝑄, 𝑑), whose 𝑠th row and 𝑞th column is
𝑝(𝑠 | 𝑞, 𝑑), is invertible for each value 𝑑.

Condition (b) is analogous to the usual relevance condition

in IV and basically says that the two proxies 𝑆 and 𝑄 have

sufficient joint variation at any value of 𝑑 to allow 𝑄 to serve

as an "instrument" for 𝑆. The discreteness assumption can

be generalized to a more general completeness condition; see

Miao et al.[3] and Deaner [4]. As with the usual IV relevance

condition, Condition (b) is testable from the data. In contrast,

the DAG itself and the other conditions involve an unobserved

variable𝐴 and are therefore generally untestable. The validity of

these untestable conditions must be assessed using contextual

knowledge about the empirical problem.

Theorem 12.6.1 Under Assumption 12.6.1, 𝑝(𝑦 : 𝑑𝑜(𝑑)) is identi-
fiable by the proximal formula:

𝑝(𝑦 : 𝑑𝑜(𝑑)) = Π(𝑦 | 𝑑, 𝑄)Π(𝑆 | 𝑄, 𝑑)−1 Π(𝑆) , (12.6.1)

where Π(𝑦 | 𝑑, 𝑄) and Π(𝑆) are row and column vectors whose
entries are of the form 𝑝(𝑦 | 𝑑, 𝑞) and 𝑝(𝑠).

The mnemonic way to think about the formula above is that we

are doing a kind of instrumental regression of 𝑌 on 𝑆, while

instrumenting 𝑆 with 𝑄, which is exactly how we dealt with

the linear version of this problem in Section 12.6.

Remark 12.6.1 [17] and and [18] provide moment functions

defined in terms of efficient influence functions, which possess

the Neyman orthogonality property, for estimating of the

average treatment effect within this proxy control setting in

the presence of a high-dimensional set of control variables.

These moment functions can thus serve as the foundation for

the use of DML inference methods for the average treatment

effect in such settings.
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Notebooks

▶ DML Sensitivity R Notebook analyses the sensitivity of

the DML estimate in the Darfur wars example to unob-

served confounders using the Sensemakr package in R.

DML Sensitivity Python Notebook does the same analysis

in Python.

▶ DML for Partially Linear IV R Notebook and DML for

Partially Linear IV Python Notebook carry out the DML

IV analysis of the Acemoglu-Johnson-Robinson example,

which considers the impact of the quality of institutions

on economic growth, instrumenting quality of institu-

tions with settler mortality. The notebook explores the

partially linear IV model and tests for the presence of

weak instruments. See Chapter 14 for further discussion

of this example as well as discussion of weak identifica-

tion/instruments.

▶ DML for LATE Models R Notebook and DML for LATE

Models Python Notebook estimate the Local Average

Treatment Effects of 401(K) participation on net financial

wealth.

▶ DML for Linear Proxy Controls Python Notebook pro-

vides an application of using proxy controls to estimate

the effect of smoking on birth weight.

Study Problems

1. Explain omitted confounder bias to a fellow student (one

paragraph). Explore using sensitivity analysis to aid in

understanding robustness of economic conclusions to

the presence of unobserved confounders in an empirical

example of your choice. The DML Sensitivity R Note-

bookcan be a helpful starting point but apply the ideas to

a different empirical example. (You could use any of the

previous examples we have analyzed).

2. Write a brief explanation of the idea of the instrumental

variables regression model that would be appropriate for

educating a fellow student. Discuss the idea of identifying

the causal effect in this setting via path analysis in the

spirit of what Philip Wright did. Illustrate your discus-

sion with an empirical example. For example, revisit the

analysis in DML for Partially Linear IV R Notebook.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-sensitivity-analysis-with-sensmakr-and-debiased-ml.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-sensitivity-analysis-with-sensmakr-and-debiased-ml.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-debiased-ml-for-partially-linear-iv-model.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-debiased-ml-for-partially-linear-iv-model.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-debiased-ml-for-partially-linear-iv-model.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-dml-401k-IV.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-dml-401k-IV.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-dml-401k-IV.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/python-proxy-controls.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-sensitivity-analysis-with-sensmakr-and-debiased-ml.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-sensitivity-analysis-with-sensmakr-and-debiased-ml.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-debiased-ml-for-partially-linear-iv-model.irnb
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3. (Simulation.) Create a notebook to simulate one of the

linear IV or proxy controls models that we’ve described.

Assume there are no 𝑋’s for simplicity. Demonstrate

numerically why using least squares may not be ap-

propriate due to unobserved confounding. Demonstrate

numerically how using instrumental variable regression

overcomes the issue.

4. (LATE etc.) Explain to a fellow student in writing one

of the nonlinear models (e.g. LATE, IV quantile model,

or the nonlinear model with proxy controls) and how

causal parameters in these models are identified. DML

for LATE Models R Notebook could be a starting point for

explaining LATE and illustrating your explanation with

empirical results. (If you have a good empirical example

for proxy controls, please let us know.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-dml-401k-IV.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM4/r-dml-401k-IV.irnb
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12.A Proofs

Latent Confounder Bias Result: Theorem 12.2.1

The proof heavily relies on the Frisch-Waugh-Lovel partialling

out theorem (FWL) and the normalization on the variance of

the latent confounder:

E[�̃�2] = 1. (12.A.1)

The proof also relies on the properties of 𝑅2

𝑈∼𝑉 which measures

the proportion of variance of centered random variable𝑈 that

is linearly explained by another centered random variable 𝑉 :

𝑅2

𝑈∼𝑉 =
𝐸𝛽2𝑉2

E[𝑈2] = 1 − E[𝜖2]
E[𝑈2] =

(E[𝑈𝑉])2
E[𝑈2]E[𝑉2] = Cor

2(𝑈,𝑉),

where 𝛽 = E[𝑉𝑈]/E[𝑉2] is the coefficient of the best linear

projection of𝑈 onto 𝑉 , 𝜖 = 𝑈 − 𝛽𝑉 is the projection residual,

and Cor(𝑈,𝑉) denotes the correlation between𝑈 and 𝑉 . Note

that 𝑅2
is symmetric in𝑈 and 𝑉 : 𝑅2

𝑈∼𝑉 = 𝑅2

𝑉∼𝑈 .

By FWL and the normalization (12.A.1), we have

𝛾 = E[�̃��̃�], 𝛿 = E[�̄��̄�]/E[�̄�2],

where

�̄� = �̃� − 𝛽�̃�; 𝛽 = E[�̃��̃�]/E[�̃�2];

�̄� = �̃� − �̃��̃�; �̃� = E[�̃��̃�]/E[�̃�2].

It follows that

𝜙2 =
𝛾2𝛿2

(E[�̃�2])2
=
(E[�̃��̃�])2

(E[�̃�2])2
(E[�̄��̄�])2
(E[�̄�2])2

.

Then the result follows from the normalization (12.A.1) and the

following relations:

(E[�̃��̃�])2 = Cor
2(�̃�, �̃�)E[�̃�2] = 𝑅2

�̃�∼�̃�E[�̃�2],

(E[�̄��̄�])2 = Cor
2(�̄�, �̄�)E[�̄�2]E[�̄�2] = 𝑅2

�̄�∼�̃�E[�̄�2]E[�̄�2],

E[�̄�2] = 1 − 𝑅2

�̃�∼�̃� = 1 − 𝑅2

�̃�∼�̃�.

and noting that by definition 𝑅2

�̄�∼�̄� = 𝑅2

�̃�∼�̃�|�̃� .
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Partially Linear Outcome IV Model:

Theorem 12.3.2

First note that since E[�̃� | 𝑋] = 0, we can re-write the moment

condition as

E[(𝑌 − 𝛼𝐷)�̃�] = 0.

We can use the structural equation for 𝑌 to replace 𝑌 in the

moment equation:

E[(𝑔𝑌(𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌) − 𝛼𝐷)�̃�] = 0.

Furthermore, since �̃� ⊥⊥ 𝐴, 𝜖𝑌 | 𝑋, we have that

E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)�̃�] = E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)E[�̃� | 𝑋, 𝐴, 𝜖𝑌]]
= E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)E[�̃� | 𝑋]] = 0.

Thus we can re-write the moment equation as

E[(𝑔𝑌(𝜖𝑌)𝐷 − 𝛼𝐷)�̃�] = 0.

Solving for 𝛼 and using the fact that 𝜖𝑌 ⊥⊥ �̃�, we get

𝛼 =
E[𝑔𝑌(𝜖𝑌)𝐷�̃�]

E[𝐷�̃�]
=

E[𝑔𝑌(𝜖𝑌)]E[𝐷�̃�]
E[𝐷�̃�]

= E[𝑔𝑌(𝜖𝑌)].

Partially Linear Compliance IV Model:

Theorem 12.3.3

Using the exact same arguments as in the proof of Theo-

rem 12.3.2, we can deduce that the solution to the moment

restriction takes the form

𝛼 =
E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)𝐷�̃�]

E[𝐷�̃�]
=

E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)E[𝐷�̃� | 𝑋, 𝐴, 𝜖𝑌]]
E[𝐷�̃�]

.

We now use the assumptions on the structural response func-

tions of 𝐷 and 𝑍 to argue that E[𝐷�̃� | 𝑋, 𝐴, 𝜖𝑌] = E[𝐷�̃�], i.e.

the covariance of 𝐷 and 𝑍 (aka compliance) is independent of

𝑋, 𝐴, 𝜖𝑌 . This independence would then imply the theorem,

since we would get that

𝛼 = E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)].
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First, we use the assumption on the structural response function

of 𝐷:

E[𝐷�̃� | 𝑋, 𝐴, 𝜖𝑌] = E[(𝑔𝐷(𝜖𝐷)𝑍 + 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷))�̃� | 𝑋, 𝐴, 𝜖𝑌].

Using the fact that𝑍 ⊥⊥ 𝐴, 𝜖𝐷 , 𝜖𝑌 | 𝑋 , and that E[�̃� | 𝑋] = 0, we

can remove the term 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷) from the above equation:

E[𝐷�̃� | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝑍�̃� | 𝑋, 𝐴, 𝜖𝑌].

Using the additively separable assumption on the structural

response of 𝑍 and the fact that 𝜖𝑍 is an exogenous independent

variable, we have

E[𝐷�̃� | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝑍𝜖𝑍 | 𝑋, 𝐴, 𝜖𝑌]
= E[𝑔𝐷(𝜖𝐷)𝜖2

𝑍 | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝜖2

𝑍]

where we used the fact that all noise variables 𝜖𝐷 , 𝜖𝑌 , 𝜖𝑍 are

exogenous and mutually independent.

Linear Proxy Model: Theorem 12.5.1.

We substitute �̃� = (�̃� − 𝜖𝑆)/𝜙 in the equation �̃� := 𝛼�̃� + 𝛿�̃� +
��̃� + 𝜖𝑌 to obtain

�̃� = 𝛼�̃� + �̄��̃� +𝑈,

𝑈 = −𝛿𝜖𝑆/𝜙 + 𝜖𝑌 ; �̄� = � + 𝛿/𝜙.

To verify

E [𝑈] = 0

we observe using repeated substitutions that:

▶ �̃� is a linear combination of (𝜖𝐴 , 𝜖𝑄 , 𝜖𝐷),
▶ �̃� is a linear combination of 𝜖𝐴 and 𝜖𝑄 .

▶ 𝑈 is a linear combination of (𝜖𝑆 , 𝜖𝑌).

The conclusion follows from the assumption that

(𝜖𝐴 , 𝜖𝑄 , 𝜖𝐷 , 𝜖𝑆 , 𝜖𝑌)

are all uncorrelated. The conclusion that 𝛼 is identified provided

that �̃� and the best linear predictor of �̃� using �̃� and �̃� have

non-degenerate covariance matrices is left as an exercise.
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The LATE Result: Theorem 12.4.1

We can use, for example, the backdoor criterion to conclude

that

E[E[𝐷 | 𝑍 = 𝑧, 𝑋]] = E[E[𝐷(𝑧) | 𝑋]] = E𝐷(𝑧).

Similarly,

E[E[𝑌 | 𝑍 = 𝑧, 𝑋]] = E[E[𝑌(𝐷(𝑧)) | 𝑋]] = E[𝑌(𝐷(𝑧))].

Furthermore, by monotonicity, we have both

�2 = E[𝐷(1) − 𝐷(0)] = P(𝐷(1) > 𝐷(0))

and

�1 = E[𝑌(𝐷(1)) − 𝑌(𝐷(0))]
= E[{𝑌(1) − 𝑌(0)}1{𝐷(1) > 𝐷(0)}].

Therefore

�1/�2 = E[𝑌(1) − 𝑌(0) | 𝐷(1) > 𝐷(0)].

Testable Restriction for the IV Quantile Model:

Theorem 12.4.2

The result is immediate from (i) the equivalence of the event

𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) and the event 𝜖𝑌 ≤ 𝑢, which holds under the

strict monotoniticity assumption, and (ii) the independence of

𝜖𝑌 from 𝑍 and 𝑋 which follows from the stated independence

conditions. Using (i) and (ii), we have

P[𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) | 𝑍, 𝑋] = P[𝜖𝑌 ≤ 𝑢 | 𝑍, 𝑋]

= P[𝜖𝑌 ≤ 𝑢] = P[𝑈(0, 1) ≤ 𝑢] = 𝑢.

Identification in the Nonlinear Proxy Variables

Model: Theorem 12.6.1

To sketch a proof, the DAG implies that the observed vari-

ables 𝐷,𝑌, 𝑄, 𝑆 and the unobserved variable 𝐴 obey the two
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conditional independence relations:

(𝑖) 𝑆 ⊥⊥ (𝑄, 𝐷) | 𝐴 (𝑖𝑖) 𝑄 ⊥⊥ 𝑌 | (𝐴, 𝐷). (12.A.2)

These in turn imply

Π(𝑆 | 𝑄, 𝑑) = Π(𝑆 | 𝑄, 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑)

= Π(𝑆 | 𝐴)Π(𝐴 | 𝑄, 𝑑)

and

Π(𝑦 | 𝑄, 𝑑) = Π(𝑦 | 𝑄, 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑)

= Π(𝑦 | 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑).

We now want to solve these equations for Π(𝑦 | 𝐴, 𝑑) in terms

of quantities that could be learned in the data.

We will need invertibility of Π(𝑆 | 𝑄, 𝑑) which requires in-

vertibility of both Π(𝑆 | 𝐴) and Π(𝐴 | 𝑄, 𝑑). Under these

invertibility conditions, we have

Π(𝐴 | 𝑄, 𝑑) = Π(𝑆 | 𝐴)−1Π(𝑆 | 𝑄, 𝑑)

and

Π(𝑦 | 𝑄, 𝑑) = Π(𝑦 | 𝐴, 𝑑)Π(𝑆 | 𝐴)−1Π(𝑆 | 𝑄, 𝑑),

which yield

Π(𝑦 | 𝐴, 𝑑) = Π(𝑦 | 𝑄, 𝑑)Π(𝑆 | 𝑄, 𝑑)−1Π(𝑆 | 𝐴).

Next, because 𝐴 blocks backdoor paths between 𝐷 and 𝑌, we

have that

𝑝(𝑦 | 𝑎 : 𝑑𝑜(𝑑)) = 𝑝(𝑦 | 𝑎, 𝑑) (12.A.3)

or, after integrating out 𝑎,

𝑝(𝑦 : 𝑑𝑜(𝑑)) = Π(𝑦 | 𝐴, 𝑑)Π(𝐴),

which can be further expressed as

Π(𝑦 | 𝑑, 𝑄)Π(𝑆 | 𝑄, 𝑑)−1 Π(𝑆) , (12.A.4)

using the derivations above.
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