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"Never cross a river that is on average four feet

deep."

– Nassim Nicholas Taleb [1].

We study estimation and inference on heterogeneous treatment

effects. We introduce DML for inference on heterogenous treat-

ment effects. We first review conditional and group average

treatment effects as methods to analyse differences in the im-

pact of treatment arising from the value of covariates. We show

how these effects can be estimated using OLS. We illustrate the

approach using the 401(k) example. We then consider more

flexible inference on heterogeneous effects using adaptations

of Random Forest methods, known as Causal Forests and illus-

trate the approach with an application on a large social science

experiment studying the effect of the use of the word "welfare"

in policy documents, on public perception.
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14.1 CATEs under Conditional Exogeneity

We consider the standard setup for analyzing the effect of a

binary treatment in the presence of a high-dimensional set

of controls 𝑍. We focus on the binary treatment

case, but note that the approach

readily extends to more general set-

tings.

Specifically, we have potential outcomes 𝑌(0)
and 𝑌(1) and assigned treatment 𝐷 that obey the conditional

exogeneity condition:

𝐷 ⊥⊥ 𝑌(𝑑) | 𝑍.

We observe the outcome 𝑌 := 𝑌(𝐷), the treatment assignment

𝐷, and the high-dimensional set of controls 𝑍.

Our main interest in this section is the Conditional Average

Treatment Effect (CATE) defined as

𝜏0(𝑋) = E[𝑌(1) − 𝑌(0) | 𝑋],

where 𝑋 is (typically) a low-dimensional subset of covariates 𝑍.

We have already seen in prior sections that under conditional

exogeneity, the conditional average treatment effect is identified

by the conditional average predictive effect (c.f. Theorem 5.2.1),

which leads to the simple identification equation:

𝜏0(𝑋) = E[E[𝑌 | 𝐷 = 1, 𝑍] − E[𝑌 | 𝐷 = 0, 𝑍] | 𝑋] (14.1.1)

The value of CATE estimation So far in our analysis we have

primarily been focusing on average causal effects. However,

average effects are not informative of whom to treat. At best

they can inform uniform policies, where we decide whether to

roll out or not a new treatment on the whole population. Such

uniform policies can have two major drawbacks. If the average

effect is significantly positive and we decide to uniformly deploy

the treatment, then there could potentially exist sub-groups

in the population for which the treatment can have severe

adverse effects. Analogously, if the average effect is significantly

negative or a statistical null, then we might choose not to deploy

a new policy or treatment. However, there could exist responder
sub-groups in the population, for which the new treatment can

have a significant positive impact. In both cases, by focusing on

average causal effects, we are causing harm on sub-groups of the

population, either by depriving of or forcing a new treatment.

Conditional average treatment effects allow us to identify such

heterogeneities of the effect and discover in a data-driven man-

ner the sub-groups of the population for which the treatment

can be harmful or beneficial. Good estimates of the CATE, allows
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us to deploy personalized policies; personalizing the offered

treatment based on observable characteristics of each unit. For

this reason, the study of CATE estimation has become increas-

ingly more widespread, especially in settings where we have

rich datasets, with many informative covariates and in many

application domains; with a frontrunner domain being digital

experimentation, where datasets are rich and personalization

is easily implementable and deployable.

The hardness of CATE estimation From a statistical view-

point, estimation and inference on the CATE is inherently harder

than estimation and inference of average effects. So far, most

of the policy relevant target parameters that we have been

interested in, take the form of some low-dimensional vector

valued parameter. This is the first time, where our target causal

parameter of interest is actually a function or the value of a

function at a particular point. The closest estimation problem

to the CATE is that of estimating a Best Prediction rule or a

Conditional Expectation Function. Note that even if we had

access to both counterfactuals 𝑌(1), 𝑌(0), then estimation of

the CATE is as hard as estimating a regression function cor-

responding to the outcome 𝑌(1) − 𝑌(0). For such problems,

thus far we were content at estimating them with respect to

the mean-squared-error metric, and at a reasonable rate that

decays to zero, potentially slower than the parametric rate of

𝑛−1/2
. On the contrary for most causal effects of interest, we

were not really content with simply a mean-squared error rate;

we typically sought the ability to construct confidence intervals

and were striving for very accurate estimation, most of the times

at parametric rates.

For this reason, when it comes to CATE estimation, we will

need to re-calibrate our expectations and potentially relax our

goals. In this and the next chapter, we will consider four such

avenues:

▶ Target the estimation of the best linear approximation

(BLA) of the CATE function, with a set of predefined

low-dimensional engineered features. In this case, we

can essentially recover all the desiderata of target causal

quantities: estimation at parametric rates, confidence

intervals for the BLA at a particular point and even

simultaneous confidence bands for the BLA at a set of

target evaluation points.

▶ Target inference on other summarizations of CATE such

as its tail expectations, the value of a covariate-based
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treatment policy, and the value of the optimal such pol-

icy. Again, we recover the desiderata of target causal

quantities.

▶ Construct non-parametric confidence intervals for CATE

predictions at a particular point, using novel methods

(such as Causal Forests), which are practically powerful

and marry machine learning techniques with uncertainty

quantification, but which are theoretically valid only

when 𝑋 is low-dimensional, and which in practice can be

more brittle and are not as assumption-lean as inference

based on OLS.

▶ Drop our desire to produce confidence intervals on the

CATE function and only require good accuracy of the

learned CATE function as captured by the mean-squared-

error metric. In this case, we will be essentially treating the

CATE problem as a best prediction problem and we will

need to develop analogous methods for model selection,

ensembling and out-of-sample evaluation. To compen-

sate for the lack of confidence intervals for the CATE

predictions, we will develop hypothesis tests that can be

performed out-of-sample, that act as validation metrics

that measure the quality of the CATE model as whole, as

summarized in particular dimensions. For instance, we

can test out of sample, whether the model picked up any

statistically significant signal of heterogeneity, or if we use

the model to prioritize treatment among the population,

then will it lead to statistically significant policy gains.

▶ Drop the emphasis on learning the effect heterogeneity

and focus only on the value of personalized policies

that come out of our estimation process. In this case, we

view CATE only as a means to our goal of designing

personalized policies and in that respect we might want

to measure the quality of our process, solely based on

the personalized policy gains over some baseline, and

not on the accuracy of the magnitude of the effect. Note

that to learn a good policy, we are primarily interested

in learning the sign of the effect and not necessarily its

magnitude and appropriately partitioning the population

such that the sign of the effect is relatively homogeneous

within each sub-group. From this perspective, learning

a good policy is more akin to a classification problem

(classifying for which parts of the population the effect is

positive/negative) as opposed to a regression problem

and we will investigate such a formal equivalence.
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14.2 Inference on Best Linear

Approximations

Our main goal is summarizing the potentially complex and high-

dimensional treatment effect function, which may depend on

the entire vector𝑍, in terms of a lower-dimensional object𝑋 . We

may be interested in such summaries for aiding interpretation

or for policy reasons where we are interested in effects among

particular recipients defined by observable characteristics.

For example, in the context of the 401(K) analysis from previous

chapters, we have that 𝑌 is a household’s total net financial

assets, 𝐷 is 401(k) eligibility status, and 𝑍 is the entire set of

household characteristics. We might then take 𝑋 to be income

in which case the CATE 𝜏0(𝑋) shows the expected effect of

401(k) eligibility on total financial assets for a subject whose

income level is 𝑋.

The key to adaptively estimating and potentially performing in-

ference for the CATE is expressing it as a conditional expectation

of an unbiased signal:

𝜏0(𝑋) = E[𝑌(�0) | 𝑋],

where the signal takes the form

𝑌(�) = 𝐻(�) (𝑌 − 𝑔(𝐷, 𝑍)) + 𝑔(1, 𝑍) − 𝑔(0, 𝑍),

with nuisance parameters � := (�, 𝑔) and

𝐻(�) :=
𝐷

�(𝑍) −
1 − 𝐷

1 − �(𝑍) .

Here, 𝑔(𝐷, 𝑍) and �(𝑍) are square integrable functions with

�(𝑍) taking on values in [𝜖, 1 − 𝜖] for some 𝜖 > 0. The true

values of these nuisance parameters are �0 := (�0, 𝑔0) defined

as

�0(𝑍) := P(𝐷 = 1 | 𝑍), 𝑔0(𝐷, 𝑍) := E[𝑌 | 𝑍, 𝐷].

Importantly, the signal has the Neyman orthogonality prop-

erty:

𝜕�E[𝑌(�0) | 𝑋] = 0.

Making use of the representation of the CATE as the conditional

expectation of 𝑌(�0), we then estimate the CATE using the

following steps:
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Generic DML for CATE

1. Partition data indices into 𝑘 folds of approxi-

mately equal size: {1, ..., 𝑛} = ∪𝐾
𝑘=1
𝐼𝑘 . For each fold

𝑘 = 1, ..., 𝐾, compute ML estimators �̂�[𝑘](𝐷, 𝑍) and

�̂[𝑘](𝑍) of the best predictors 𝑔0(𝐷, 𝑍) and �0(𝑍) leav-

ing out the 𝑘-th block of data. For any observation

𝑖 ∈ 𝐼𝑘 , define

𝑌𝑖(�̂) = 𝑌𝑖(�̂𝑘)
= 𝐻𝑖(𝑌𝑖 − �̂�[𝑘](𝐷𝑖 , 𝑍𝑖)) + �̂�[𝑘](1, 𝑍𝑖) − �̂�[𝑘](0, 𝑍𝑖)

where 𝐻𝑖 =
𝐷𝑖

�̂[𝑘](𝑍𝑖)
− 1 − 𝐷𝑖

1 − �̂[𝑘](𝑍𝑖)
.

2. Use low-dimensional or high-dimensional regression

methods to regress 𝑌𝑖(�̂) on covariate features 𝑋𝑖 .

If low-dimensional methods are used, inference on

CATE can proceed using standard results for low-

dimensional methods.

Under regularity conditions, the second step is adaptive, mean-

ing all the learning guarantees and confidence intervals are

approximately the same as if we knew the nuisance parame-

ters �0. This adaptation holds true because of the conditional

Neyman orthogonality of 𝑌(�). We note that this adaptivity

does not imply that inferential objects, e.g. confidence intervals,

can readily be obtained if high-dimensional methods are used

in Step 2. We discuss implementation and inferential issues in

more detail in the following sections.

Least Squares Methods for Learning CATEs

Here we focus on using least squares in the second step of the

general approach given above.

Consider approximating or summarizing the function 𝑡(𝑥) by a

linear combination of basis functions:

𝑝(𝑥)′𝛽0,

where 𝑝(𝑥) is 𝑑-dimensional dictionary with

𝑑 ≪ 𝑛.
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For example, 𝑝(𝑥) could be a vector of group indicators or a

vector of orthogonal polynomials or splines.

The parameter 𝛽0 is chosen to minimize the approximation

error to the CATE:

min

𝛽
E(𝜏0(𝑋) − 𝑝(𝑋)′𝛽)2.

𝑝(𝑥)′𝛽0 is thus the best linear predictor for the CATE; that is,

𝛽0 = (E [𝑝(𝑋)𝑝(𝑋)])−1

E [𝑝(𝑋)𝑌(�0)] .

An important, easily interpretable special case is when we

choose to use group indicators in forming the basis functions

𝑝(𝑥). Specifically, we define group indicators as

𝐺𝑘(𝑋) = 1(𝑋 ∈ 𝑅𝑘),

where 𝑅′
𝑘
𝑠 are mutually exclusive regions in the covariate space.

For example, in the 401(k) example, we may be interested in

average treatment effects for observations with household in-

come less than $10,000, observations with income between

$10,000 and $20,000, etc. which we could capture by defin-

ing 𝐺1(𝑋) = 1(Income < $10, 000), 𝐺2(𝑋) = 1($10, 000 ≤
Income < $20, 000), etc. With the group indicators defined,

we then set

𝑝(𝑋) = (𝐺1(𝑋), . . . , 𝐺𝐾(𝑋))′.

In this case, the Best Linear Predictor 𝛽0 recovers the GATEs

(group average treatment effects).

More generally, 𝑝(𝑥) ∈ ℝ𝑑
represents a 𝑑-dimensional dic-

tionary of series/sieve basis functions – e.g., polynomials or

splines – and 𝑝(𝑥)′𝛽0 corresponds to the best linear approxima-

tion to the target function 𝜏0(𝑥) in the given dictionary. Under

some smoothness conditions, 𝜋(𝑥) = 𝑝(𝑥)′𝛽0 will approximate

𝜏0(𝑋) as the dimension of the dictionary becomes large, and

our inference will target this function.

Taking the approach motivated above to a sample of data, we

have that the natural estimator of the best linear predictor of

the CATE is

𝑝(𝑥)′�̂�,

where �̂� is the ordinary least squares estimate of 𝛽0 defined on
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the random sample (𝑋𝑖 , 𝐷𝑖 , 𝑌𝑖)𝑁𝑖=1
:

�̂� :=

(
1

𝑁

𝑁∑
𝑖=1

𝑝(𝑋𝑖)𝑝(𝑋𝑖)′
)−1

1

𝑁

𝑁∑
𝑖=1

𝑝(𝑋𝑖)𝑌𝑖(�̂).

Semenova et al. [2] derive a complete set of results for the

properties of 𝑝(𝑥)′�̂� as an estimator of the best linear predictor

curve 𝑥 ↦→ 𝑝(𝑥)′𝛽0. Importantly, these results establish an

asymptotic approximation that allows simultaneous inference

on all parameters of the best linear predictor curve. The key

result verifies that the large sample properties of �̂� are the same

as those of

�̄� :=

(
1

𝑁

𝑁∑
𝑖=1

𝑝(𝑋𝑖)𝑝(𝑋𝑖)′
)−1

1

𝑁

𝑁∑
𝑖=1

𝑝(𝑋𝑖)𝑌𝑖(�0),

when ML tools are used to estimate the nuisance parameter �0

so long as the ML tools perform sufficiently well. Thus, we can

employ standard methods for inference about 𝛽0 and the best

linear predictor curve functional 𝑥 ↦→ 𝑝(𝑥)′𝛽0.

Specifically, leveraging that �̂� and �̄� have the same large sample

properties, we have

�̂� − 𝛽0 ∼𝑎 𝑁(0, Ω̂/𝑁),

where

Ω̂ := 𝑄−1

[
𝔼𝑛𝑝(𝑋𝑖)𝑝(𝑋𝑖)′(𝑌𝑖(�̂) − 𝑝(𝑋𝑖)′�̂�)2

]
𝑄−1

(14.2.1)

for 𝑄 = 𝔼𝑛𝑝(𝑋𝑖)𝑝(𝑋𝑖)′.

This result can be used to construct uniform confidence bands

for

𝑥 ↦→ 𝑝(𝑥)′𝛽0,

which can be interpreted as confidence intervals for CATE

𝑥 ↦→ 𝜏0(𝑥) if the approximation error is small.

Application to 401(k) Example

R Notebook for DML on CATE ana-

lyzes the ATE of 401(K) conditional

on income.

We illustrate estimation of CATEs and GATEs by revisiting the

401(k) example. Here, we consider the effect of 401(k) eligibility

on net total financial assets controlling for household character-

istics. We consider heterogeneity of this effect as a function of

income. We consider two different ways to summarize these het-

erogeneous effects: GATEs based on coarse income categories

https://www.kaggle.com/victorchernozhukov/dml-for-conditional-average-treatment-effect?scriptVersionId=63137207
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Figure 14.1: Inference on ATE of

401(k) Eligibility by Income Group

and a summary of the CATE given income based on a collection

of polynomial terms in log(Income).

We show estimates and confidence bands on GATEs by income

groups in Figure 14.1. Here, groups correspond to income

quintiles; e.g the first group has households with income smaller

than the 20
th

percentile, the second group has households with

income between the 20
th

and 40
th

percentile, and so on. Point

estimates are provided by the central solid black bands. We

represent pointwise confidence bands with the red lines in

the interior of the box for each GATE. These bands would

be appropriate for inference if one were interested ex ante
in a single, pre-specified GATE. For example, one might be

specifically interested in the eligibility effect among low income

individuals and thus focus on the pointwise intervals over

the first GATE. Finally, uniform confidence bands are given

by the upper and lower bounds of the box for each GATE.

These uniform bands provide a coverage guarantee for all five

reported GATEs and would be appropriate for inference in

settings where one was interested in all five effects and did not

ex ante have a single specific GATE of interest.

We illustrate using a polynomial in log income to approximate

the CATE in Figure 14.2. Point estimates are given by the

central black line while the blue lines provide confidence bands.

The narrower – dashed – confidence bands are pointwise and

would be appropriate for a scenario in which one had a single,

pre-specified value of income of interest. The wider confidence

bands are uniform, providing a coverage guarantee for the entire
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Figure 14.2: Inference on CATE of

401(k) Eligibility Conditional on

Log-Income

best linear predictor curve 𝑥 ↦→ 𝑝(𝑥)𝛽0. That is, any path for the

entire curve that would not be rejected will lie entirely within

the uniform confidence band. Finally, note that the coverage

guarantee extends to the true CATE function 𝑥 ↦→ 𝜏0(𝑥) if the

approximation error of the polynomial to the true CATE is

small.

14.3 Personalized Policies and Inference

on Their Values

At the opening of this section we hinted that one reason why one

might want to estimate a CATE model is so as to deploy a more

personalized or contextual policy or to stratify and prioritize

the treatment assignment, so as to maximize the outcome of

interest. We formalize a personalized treatment policy 𝜋 as

function that given any instance of the variable 𝑋 returns a

probability 𝜋(𝑋) ∈ [0, 1] with which we to give treatment or

not. Note that if the probability is 1 or 0 it is a deterministic

assignment to treat or not treat. We are interested in conducting

inference on the value of any policy 𝜋 and in particular the

maximum such possible value.

Given any policy 𝜋, we define its value as its gain in the average

outcome if we were to follow 𝜋’s treatment recommendation

for everyone in the population compared to treating no one:

𝑉(𝜋) := E[𝜋(𝑋)𝑌(1) + (1 − 𝜋(𝑋))𝑌(0)] − E[𝑌(0)]
= E[𝜋(𝑋) (𝑌(1) − 𝑌(0))]
= E[𝜋(𝑋) 𝜏0(𝑋)]. (14.3.1)
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Since we have already seen that the CATE 𝜏0(𝑋) can be identified

as E[𝑌(�0) | 𝑋], we derive that the policy gains of any candidate

policy can be identified as:

𝑉(𝜋) := E [𝜋(𝑋)E[𝑌(�0) | 𝑋]] = E[𝜋(𝑋)𝑌(�0)].

For a given fixed𝜋, this quantity is akin to the ATE considered in

Section 10.3 weighted by a known function 𝜋(𝑋). In particular,

when 𝜋(𝑋) = 1 treats everyone, 𝑉(𝜋) is the ATE. The policy

value is also akin to the GATE considered in the same section:

if we scale it up by 1/E[𝜋(𝑋)] then it is the GATE among those

treated by 𝜋. Correspondingly, we can conduct inference on it

by following the same recipe as in Section 10.4. This corresponds

to the estimate

𝑉(𝜋) = 1

𝑛

𝑛∑
𝑖=1

𝜋(𝑋𝑖)𝑌(�̂[𝑘(𝑖)]),

and the statement of Theorem 10.3.1 still applies to this weighted

ATE, providing for inference on 𝑉(𝜋).

One measure of the heterogeneity of treatment effects is how

much we can deviate from the average effect by carefully tailor-

ing who gets assigned which treatment, that is, how large we

can make 𝑉(𝜋):

𝑉∗ = max

𝜋
𝑉(𝜋) = E[max

𝑝∈[0,1]
𝑝 𝜏0(𝑋)] = 𝑉(𝟙{𝜏0(𝑋) ≥ 0}).

The last equality shows that𝜋∗(𝑋) = 𝟙{𝜏0(𝑋) ≥ 0} is an optimal

policy (there may be multiple if P(𝜏0(𝑋) = 0) > 0). This suggests

we can estimate 𝑉∗ by following the same recipe as before and

treating 𝜏0 as one more nuisance to estimate and plug into the

policy we are evaluating. This, in fact, works well whenever

𝜋∗ is uniquely optimal because then first order conditions

for the optimization problem defining 𝑉∗ will automatically

ensure a zero derivative in 𝜏0, i.e., Neyman orthogonality as

in Section 10.4. Namely, write 𝑉∗ = 𝑀(𝜏0, �0) = max𝜏𝑀(𝜏, �0),
where 𝑀(𝜏, �) = E[𝟙{𝜏(𝑋) ≥ 0}𝑌(�)]. We already know that

𝜕�𝑀(𝜏0, �0) = 0 from the case of evaluating any given policy,

seen as a weighted ATE. For the derivative in 𝜏 we have

1

𝑡
|𝑀(𝜏0 + 𝑡�, �0) −𝑀(𝜏0, �0)|

=
1

𝑡
E[𝜏0(𝑋)(𝟙{−𝑡�(𝑋) ≤ 𝜏0(𝑋) < 0 ∨ 0 ≤ 𝜏0(𝑋) < −𝑡�(𝑋)})]

≤ E[|�(𝑋)|𝟙{|𝜏0(𝑋)| ≤ 𝑡 |�(𝑋)|}]
≤ ∥�∥2

√
P(|𝜏0(𝑋)| ≤ 𝑡 |�(𝑋)|),
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1: Just uniqueness of 𝜋∗ may

not be enough satisfy the addi-

tional regularity assumptions of

Theorem 10.4.1 beyond Neyman

orthogonality. We may need

to assume not only that 𝜏0(𝑋)
has no atom at 0 but that it in

fact has a bounded density in a

neighborhood of 0. Additionally,

the norm in which estimates of 𝜏0

converge is important and interacts

with the allowable rate.

When, on the other hand, 𝜋∗

is not at all unique, inference on

𝑉∗ can be tricky. A solution to this

challenging problem is given in

[3].

which has limit 0 as 𝑡 → 0 by the continuity of probability and

P(𝜏0(𝑋) = 0) = 0 (since otherwise 𝟙{𝜏0(𝑋) > 0} would not be

almost surely the same as 𝜋∗(𝑋), contradicting its uniqueness).

Thus, it suffices we learn 𝜏0 at non-parametric rates and plug

it into a guess for 𝜋∗, which we then evaluate the same as any

fixed policy.
1

While 𝑉∗ provides insight into how much we can get out of a

treatment and covariates𝑋 if we are careful about personalizing,

it need not give a full picture of the heterogeneity of treatment

effects across𝑋 . For example, it may well be 0 if treatment effects

are all negative, even if they are very heterogeneous. Another

lens into heterogeneity may be the value of the optimal policy,

when constrained to treat exactly 𝑞-fraction of the population:

𝑉∗𝑞 = max

𝜋:E[𝜋(𝑋)]=𝑞
E[𝜋(𝑋)𝜏0(𝑋)]

= max

𝜋
min

�
E[𝜋(𝑋)𝜏0(𝑋) + �(𝑞 − 𝜋(𝑋))]

= min

�
max

𝜋
E[𝜋(𝑋)𝜏0(𝑋) + �(𝑞 − 𝜋(𝑋))]

= min

�
𝑞� + E[0 ∨ (𝜏0(𝑋) − �)]. (14.3.2)

Exchanging the order of max and

min in the penultimate line of

Eq. (14.3.2) is justified by a result

known as Sion’s minimax theorem.

We recognize the minimizer of the check loss in Eq. (14.3.2) as

the quantile. So the latter minimization is attained at � equal

to the (1 − 𝑞)-th quantile �(𝜏0, 𝑞) = inf{𝑡 : P(𝜏0(𝑋) > 𝑡) ≤ 𝑞}.
Thus, any optimal constrained policy has 𝜋∗𝑞(𝑋) = 1 when

𝜏0(𝑋) > �(𝜏0, 𝑞) and 𝜋∗𝑞(𝑋) = 0 when 𝜏0(𝑋) < �(𝜏0, 𝑞). The

quantity𝑉∗𝑞/𝑞 is exactly the average treatment effect among the

𝑞-fraction of a subpopulation with largest values of 𝜏0(𝑋), also

known as the superquantile or the conditional value at risk.

When P(𝜏0(𝑋) = �(𝜏0, 𝑞)) > 0 this subpopulation may not be

unique and there can be different ways of splitting the group

with 𝜏0(𝑋) = �(𝜏0, 𝑞) to obtain a subpopulation of fraction

exactly 𝑞 (assuming either an infinite population or a finite

population of infinitely divisible units). Notice the quantity 𝑉∗𝑞
is still well-defined even in this non-unique case, and that as

we vary 𝑞, we obtain a full characterization of the distribution

of 𝜏0(𝑋).

Now, suppose P(𝜏0(𝑋) = �(𝜏0, 𝑞)) = 0. Then, the constrained

optimal policy is uniquely given by𝜋∗𝑞(𝑋) = 𝟙{𝜏0(𝑋) ≥ �(𝜏0, 𝑞)}
and we have that 𝑉∗𝑞/𝑞 = E[𝑌(1) − 𝑌(0) | 𝜏0(𝑋) ≥ �(𝜏0, 𝑞)] is

exactly the GATE among those with CATE above the (1 − 𝑞)-
th quantile. Moreover, for 𝑞′ > 𝑞 with P(𝜏0(𝑋) = �(𝜏0, 𝑞)) =
P(𝜏0(𝑋) = �(𝜏0, 𝑞

′)) = 0, we have that (𝑉∗𝑞′ −𝑉∗𝑞 )/(𝑞′ − 𝑞) is the

GATE among those with CATES between the (1 − 𝑞′)-th and

(1 − 𝑞)-th quantiles.
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2: Complete details on how to do

inference on 𝑉∗𝑞 and guarantees

thereon are given in [4].

In the latter unique case, we may be tempted to follow the

same recipe as before to also estimate 𝑉∗𝑞 : plug in estimates of

𝜏0, �(𝜏0, 𝑞) to form a guess of𝜋∗𝑞 and evaluate it as we would any

fixed policy. This worked for 𝑉∗ because 𝜋∗ maximized value,

automatically inducing Neyman orthogonality. However, 𝜋∗𝑞
does not globally maximize value, only subject to constraints. In

other words, we do have𝑉∗ = 𝑀(𝜏0−�(𝜏0, 𝑞), �0), but generally

𝜕𝑀(𝜏0 − �(𝜏0, 𝑞), �0) ≠ 0.

To recover the same orthogonality-via-optimality as before we

need to introduce a cost of violating the constraint. This is exactly

what Eq. (14.3.2) does. Namely, writing𝑉∗𝑞 = 𝑀𝑞(𝜏0, �(𝜏0, 𝑞), �0) =
min� max𝜏𝑀𝑞(𝜏,�, �0), where 𝑀𝑞(𝜏,�, �) = 𝑞�+E[𝟙{𝜏(𝑋) ≥
�}(𝑌(�)−�)], we will again find that 𝜕𝜏𝑀𝑞(𝜏0, �(𝜏0, 𝑞), �0) = 0

and 𝜕�𝑀𝑞(𝜏0, �(𝜏0, 𝑞), �0) = 0 because 𝜏0, �(𝜏0, 𝑞) by first or-

der conditions, and 𝜕�𝑀𝑞(𝜏0, �(𝜏0, 𝑞), �0) = 0 as always for

weighted ATE estimation. This provides a recipe for estimating

𝑉∗𝑞 . The minimax formulation also bestows a special property

that if we get 𝜏0 wrong (or, estimate it too slowly), we will still

get a lower bound on𝑉∗𝑞 as long as we estimate a corresponding

best-response � well.
2

14.4 Non-Parametric Inference for CATEs

with Causal Forests

An inherently harder task is performing inference on the value

𝜏0(𝑥) at a given point 𝑥. Statistically this problem can be even

harder than performing inference on the value of a regression

function at a particular point 𝑥. In fact, one solution casts the

problem as such. Note that we already argued that:

𝜏0(𝑥) = E [𝑌(�0) | 𝑋 = 𝑥] (14.4.1)

Thus one approach is to estimate the nuisance parameters �0

in a cross-fitting manner and then use any flexible regression

method that supports prediction intervals and apply it to the re-

gression problem 𝑌(�̂) ∼ 𝑋 . In low dimensions, many classical

approaches, such as kernel regression are applicable and can

be invoked. In high-dimensions these methods will struggle to

provide any meaningful insight.

An alternative is to use Random Forest based methods that

will perform much better in practice. Standard Random Forest

approaches typically equally balance bias and variance and

hence do not allow for confidence interval construction. Recent

work of [5, 6] proposes adaptations of Random Forests that,



14 Statistical Inference on Heterogeneous Treatment Effects 376

in low-dimensions, provably produce asymptotically normal

and un-biased predictions and provide theoretically justified

construction of confidence intervals. The key ingredients in

these adaptations are:

i honesty: a separate sample is used to construct the struc-

ture of the tree and a separate sample is used to calculate

the estimates at the leaf nodes of the tree,

ii balancedness: every split should leave at least a 𝜌 ≥ 0.2

fraction of the samples on each side,

iii random feature split: every feature should have a probability

of at least 𝜋/𝑑 to be chosen on each split, where 𝑑 is the

number of features (e.g. this can be achieved by choosing

a random feature to split on with probability 𝜋),

iv fully grown: the tree should be grown fully, such that the

number of samples that fall in every leaf should be at

most some small constant,

ii sub-sampling: unlike typical random forest methods that

use bootstrap sub-samples to build each tree (i.e. of the

same size as the original samples and drawn with replace-

ment), these adapted forests use sub-samples without

replacement and of a smaller size 𝑠 ≪ 𝑛 than the original

sample on each tree (the size of the sub-sample needs

to be chosen carefully for the validity of the confidence

intervals and should be of the order of 𝑛
𝛼𝑑

𝛼𝑑+1 , where

𝛼 =
log(1/𝜌)

𝜋 log(1/(1−𝜌)) ).

We will refer to any forest construction process that satisfies

these properties as an Honest Random Forest.

We will refer to Honest Random Regression Forests that are

trained on the doubly robust proxy labels𝑌(�̂), with cross-fitted

estimates of the nuisance functions, as Doubly Robust Forests.
Based on the results in [6, 7], one can show that the validity of

the confidence intervals of Honest Random Regression Forests

is maintained even when the labels are biased due to the

estimation error of the nuisance parameters �̂, so long as:√
𝑛/𝑠E[(𝐻(�̂ − 𝐻(�0)) (�̂�(𝐷, 𝑍) − 𝑔0(𝐷, 𝑍)) | 𝑋 = 𝑥] ≈ 0

Note that this requires accuracy of the nuisance estimates with

respect to a confidional mean squared error. [7] shows how this

can be achieved even in settings where 𝑍 is high-dimensional,

albeit 𝑋 remains low-dimensional. In particular, one should

expect the size of the confidence interval or the error of the

estimate to decay to zero at a rate of ≈ 𝑛
− 1

2(𝑎𝑑+1)
, where 𝑑 is

the dimension of the covariates in 𝑋. This result is based on a

conditional variant of the Neyman orthogonality property that
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is satisfied by the doubly robust proxy labels, in conjunction

with the asymptotic normality of predictions that stem from

Honest Random Forests.

Finally, under stronger assumptions and for binary covariates,

the recent work of [8] also shows that confidence intervals of

Honest Regression Random Forests trained with the squared

loss criterion and without the balancedness or random feature split
property, are asympotitcally valid even in high-dimensions, as

long as the true regression function E[𝑌 | 𝑋 = 𝑥] is sparse

(i.e. only a small constant number of variables are relevant

for predicting 𝑌). However, an upper bound on the degree of

sparsity (i.e. the number of relevant features) needs to be known.

Extending this inference result to high-dimensional continuous

features remains and active area of investigation. Similarly,

extending this result to simultaneous confidence bands and

not just pointwise confidence intervals is another active area of

investigation.

While adaptive estimation of the CATE can be obtained fairly

generally, it is important to note that 𝑋 should be low dimen-

sional if we want to obtain confidence intervals or perform

hypothesis tests. Genovese and Wasserman (Annals of Stats,

2008) [9] show that there do not exist adaptive confidence bands

for estimation of the curve 𝜏0(𝑋) except under very restrictive

assumptions more generally. They suggest instead to construct

adaptive bands that cover a surrogate function 𝜋 which is close

to, but simpler than, 𝜏0.

In the previous section, where we discuss the use of OLS

with low-dimensional 𝑋, the surrogate 𝜋 represents either

GATEs or the best linear approximation of the CATE. Inferential

guarantees are also available for the case where 𝑋 is low-

dimensional and Random Forests are used. Inferential results

for low-dimensional surrogates 𝜋 based on other methods

should also be possible, though we note that GATEs and best

linear predictors more generally are readily interpretable and

will likely be useful in many settings.

Despite these theoretical limitations, forest based approaches

are empirically powerful as they tend to identify the most

relevant factors that drive treatment effect heterogeneity, while

at the same time providing some signal of uncertainty of the

prediction. Even though this uncertainty quantification is more

brittle than for instance the confidence intervals of an OLS

regression, as it depends on many more assumptions and holds

only under particular choices of the hyperparameters of the

method (which are typically violated in practice; especially
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when data-driven hyperparameter tuning is invoked via cross-

validation, which is the typical case), honest random forest

based approaches still provide a meaningful signal of how

uncertain the model is about its CATE predictions, at different

regions of the covariate space.

Generalized Random Forests (GRF) An alternative approach

is to formulate the CATE problem as solving a local or condi-

tional version of a moment restriction [6, 7]:

E[𝑚(𝑊 ; 𝜏0(𝑥), �0) | 𝑋 = 𝑥] = 0 (14.4.2)

where 𝑚(𝑊 ; 𝜏, �) is a vector of moment restrictions of the same

dimension as 𝜏.

Such Generalized Random Forests are trained so as to maximize

the induced heterogeneity in �̂�(𝑥) with every split. For every

node 𝑃 in some tree of the forest, let �̂�𝑃 denote our estimate

of E[𝑚(𝑊 ; 𝜏𝑃 , �0) | 𝑋 ∈ 𝑃] = 0. Such an estimate can be con-

structed by solving the moment restriction with respect to 𝜏𝑃
using only the samples that fall in node 𝑃 and using an estimate

�̂ of �0 based on auxiliary data or in a cross-fitting manner. Let

𝐶1, 𝐶2 denote the child nodes that will be created from some

candidate split, with sample sizes 𝑛1 and 𝑛2 correspondingly.

Then a proxy criterion that targets maximizing heterogeneity

is maximizing 𝑛1 𝜏2

𝐶1

+ 𝑛2 𝜏2

𝐶2

. This is one of the criteria typi-

cally used in Generalized Random Forests. Moreover, to avoid

the computational burden of resolving the moment equation

for every candidate split, typically an approximation of the

quantities 𝜏𝐶1
and 𝜏𝐶2

is used. In particular, a local linear ap-

proximation around the estimate of the parent node is being

used and locally updated, i.e. 𝜏𝐶1
≈ 𝜏𝑃− 1

𝑛1

∑
𝑖∈𝐶1

𝐽𝑃𝑚(𝑊𝑖 ; 𝜏𝑃 , �̂),
with 𝐽𝑃 = 1

𝑛𝑃

∑
𝑖∈𝑃 𝜕𝜏𝑚(𝑊 ; 𝜏𝑃 , �̂), with 𝑛𝑃 being the number of

samples in the parent node.

Moreover, the final estimate �̂�(𝑥) is derived in a manner slightly

different than regression forests (albeit it coincides for the case

of a regression moment, i.e. 𝑚(𝑊 ; 𝜏(𝑥)) = 𝑦 − 𝜏(𝑥)). For more

general moments, for every target point 𝑥 for which we want

to predict the CATE, the Random Forest structure is used to

construct weights for every other sample 𝑖 ∈ {1, . . . , 𝑛}, that

capture the degree of "similarity" of 𝑥 to 𝑋𝑖 . These weights

roughly correspond to the fraction of trees in the forest, for

which 𝑋𝑖 falls in the same leaf node as 𝑥, downweighting leafs

of larger size. Thus if we have trained a forest with 𝐵 trees and

we let 𝐿𝑏(𝑥) denote the leaf node that a sample with covariates

𝑥 falls in at tree 𝑏 and let |𝐿𝑏(𝑥)| the number of samples in that
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leaf, then we have:

𝐾(𝑥, 𝑋𝑖) =
1

𝐵

𝐵∑
𝑏=1

1{𝐿𝑏(𝑥) = 𝐿𝑏(𝑋𝑖)}
|𝐿𝑏(𝑥)|

Then to calculate �̂�(𝑥), we solve with respect to �̂�(𝑥), a weighted

empirical average version of the moment condition:

𝑛∑
𝑖=1

𝐾(𝑥, 𝑋𝑖)𝑚(𝑊𝑖 ; �̂�(𝑥), �̂) = 0 (14.4.3)

using the weights that are derived based on the similarity metric

induced by the forest structure.

When the forest construction process satisfies the criteria we

defined earlier in the section of honesty, balancedness, random
feature splitting, fully grown trees and sub-sampling without replace-
ment, then under similar conditions as in the case of Regression

Forests, the prediction of a Generalized Random Forest (and its

extension, the Orthogonal Random Forest) can be shown to be

asymptotically normal and an asymptotically valid confidence

interval construction can be employed. Albeit the same limita-

tions as we described in the regression case, carry over to the

confidence intervals produced by these methods.

Causal Forests: a GRF for CATE We describe here an empiri-

cally popular variant of causal forests that uses the Generalized

Random Forest formulation. Albeit, unlike the Doubly Robust

Forest approach, this approach is valid only if 𝑋 = 𝑍 or if we

make the stronger further assumption that the high-dimensional

CATE function 𝛿0(𝑍) = E[𝑌(1) −𝑌(0) | 𝑍], is only a function of

the variables 𝑋, i.e. 𝛿0(𝑍) = 𝜏0(𝑋) and 𝜏0.

In this case, for a binary treatment, we can write without loss

of generality

E[𝑌 | 𝐷, 𝑍] = 𝜋0(𝑍)𝐷 + 𝑔0(𝑍)

where 𝜋0(𝑍) = E[𝑌 | 𝐷 = 1, 𝑍] − E[𝑌 | 𝐷 = 0, 𝑍] is the

conditional average predictive effect (CAPE). Moreover, by

conditional exogeneity, the CAPE function 𝜋0 is equal to the

high-dimensional CATE function 𝛿0. Thus, for a binary treat-

ment we can always write the regression equation:

𝑌 = 𝛿0(𝑍)𝐷 + 𝑔0(𝑍) + 𝜖, E[𝜖 | 𝐷, 𝑍] = 0

From this, we can derive that E[𝑌 | 𝑍] = 𝛿0(𝑍)E[𝐷 | 𝑍]+ 𝑔0(𝑍).
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Subsequently, we can write:

𝑌 − E[𝑌 | 𝑍] = 𝛿0(𝑋) (𝐷 − E[𝐷 | 𝑍]) + 𝜖

Letting �̂� = 𝑌 − E[𝑌 | 𝑍] and �̂� = 𝐷 − E[𝐷 | 𝑍] and since

𝑍, �̂� is uniquely determined by 𝐷, 𝑍, we can conclude that the

following regression equation holds:

�̂� = 𝛿0(𝑍) �̂� + 𝜖, E[𝜖 | �̂�, 𝑋] = 0

If we now further assume that 𝛿0(𝑍) = 𝜏0(𝑋), and since 𝑋, �̂�

is a subset of 𝑍, �̂�, we can write the regression equation:

�̂� = 𝜏0(𝑋) �̂� + 𝜖, E[𝜖 | �̂�, 𝑋] = 0 (14.4.4)

From this regression equation we can derive the moment con-

straint:

E

[
(�̂� − 𝜏0(𝑥) �̂�) �̂� | 𝑋 = 𝑥

]
= E

[
𝜖 �̂� | 𝑋 = 𝑥

]
= 0

Note that this moment equation is a conditional analogue of

the Normal Equation that we used in the PLR model, where

we used the equation

E(�̂� − �0 �̂�) �̂� = 0

to estimate the constant treatment effect under a partially linear

model E(𝑌 | 𝐷, 𝑋) = �0𝐷 + 𝑔(𝑍). Now that the coefficient

associated with 𝐷 is allowed to vary with 𝑋, we can estimate

the heterogeneous coefficient by solving the same moment but

conditional on 𝑋, i.e.

E

[
(�̂� − 𝜏0(𝑥) �̂�) �̂� | 𝑋 = 𝑥

]
= 0 (14.4.5)

Note that the above method falls in the general framework

that can be handled by Generalized Random Forests and their

extension, the Orthogonal Random Forests. We can estimate

�̂�(𝑥) by estimating the nuisance function �0 = (𝑝0, 𝑞0), where

𝑝0(𝑍) = E(𝐷 | 𝑍) and 𝑞0(𝑍) = E(𝑌 | 𝑍) in a cross-fitting man-

ner, letting �̌� = 𝑌 − �̂�(𝑍), �̌� = 𝐷 − �̂�(𝑍) and then applying the

Generalized Random Forest method with moment equation:

𝑚(𝑊 ; 𝜏(𝑥), �̂) = (�̌� − 𝜏(𝑥) �̌�) �̌�

The formal analysis of the validity of the confidence intervals of

this approach can be found in [6] for the case when 𝑋 = 𝑍 and

is low-dimensional, in which case, one does not need to account

for the errors in �̂, as long as a constant offset is also added to
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the moment equation, solving the vector of moments:

𝑚(𝑊 ; 𝜏(𝑥), 𝛽(𝑥), �̂) = (�̌� − 𝜏(𝑥) �̌� − 𝛽(𝑥))
(
�̌�

1

)
A formal analysis of the case when 𝑋 ⊆ 𝑍 and 𝑍 can be high-

dimensional (or when the constant term is not added to the

moment equation) can be found in [7], which also accounts for

the impact of the nuisance estimation errors.

Example 14.4.1 (Forests in the 401k Example) We revisit the

401(k) example that we used in the previous section and apply

the forest based methods for CATE estimation. In this case,

we used all the variables for heterogeneity (i.e. 𝑋 = 𝑍) and

let the forest methods identify the relevant dimensions of

heterogeneity in a more data-driven manner. We applied both

the Doubly Robut Forest and the Causal Forest approach. For

the nuisance estimates, in all cases, we used gradient boosted

forests and estimated the nuisances in a cross-fitting manner

with 5-fold cross-fitting.

In Figure 14.3 we depict the predictions and confidence

intervals of the Doubly Robust Forest method, where the

x-axis corresponds to income (while other co-variates are

fixed to their overall median values). In Figure 14.4 we depict

the analogous plot for the Causal Forest method. We find that

both methods identify a similar CATE and that this CATE

is inline with the intuitive property that the effect of 401(k)

eligibility on net financial assets is larger for larger incomes.

Moreover, unlike the BLP estimates, we find that the forest

based estimates, behave more reasonably at the extreme ends

of the income distribution as they do not extrapolate linearly

and identify, in a data-driven manner, a more sigmoid effect

curve, between ≈ $5𝑘 and ≈ $22𝑘. The results are almost

identical for the two methods. Moreover, the confidence

intervals are informative that the CATE prediction is quite

uncertain at the upper extreme part of the income distribution

were samples are much more spread out and there is a long tail.

Finally, when looking at measures of feature importance for

Random Forests, income was identified as the most important

feature.
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Figure 14.3: Doubly Robust Forest

in the 401k example.

Figure 14.4: Causal Forest in the

401k example.

Empirical Example: The "Welfare" Experiment

We illustrate the estimation of CATEs with forests, with an em-

pirical application on studying the effects of the word “welfare”

on the support of people for government programs. Starting

in the 1980s, the General Social Survey (GSS) started including

a question around satisfaction with public spending. What is

more important, the GSS conducted a randomized controlled

trial where the respondents where assigned one of two vari-

ations of the same question at random. Both variations had

the same meaning and introduction, albeit one was asking

about satisfaction of the respondent with respect to government

spending for “welfare programs”, while the other variation was
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phrased as government spending for “assistance to the poor”.

This small variation has been found to have substantial average

effect on the response and several studies have attempted to

parse out treatment effect heterogeneity.

In this section we applied Causal Forests and Doubly Robust

Forests on a dataset collected from such GSS surveys from

1986 to 2010, as described in [10]. The dataset consists of 12907

samples containing i) the variant of the question that was as-

signed to the participant (with𝐷 = 1 corresponding to “welfare

programs” and𝐷 = 0 corresponding to “assistance to the poor),

ii) their numerical level of satisfaction response to the question

(𝑌) and 42 features (𝑋) that contain many characteristics of the

respondent related to gender, income, education, family size

and marital status, race, political views and occupation sector.

The average treatment effect based on a simple two-means

estimate is −0.3681 as reported in Figure 14.5.

coef std err P> |z| [0.025 0.975]

const 0.4798 0.006 0.000 0.467 0.492

𝐷 -0.3681 0.007 0.000 -0.383 -0.354
Figure 14.5: Average treatment ef-

fect in welfare experiment.

We constructed a Causal Forest and a Doubly Robust Forest

using all the 42 variables for treatment effect heterogeneity and

as controls. We used gradient boosting regression with cross-

fitting to calculate the nuisance functions required for each of the

forests. The hyperparameters of the nuisance estimators were

selected based on cross validation. Subsequently, we looked

at the most important feature in the forest, as measured by a

feature importance criterion that roughly corresponds to the

average reduction in the splitting criterion, every time that

the feature was used for splitting. The most important feature

came out to be political views, both in the Causal Forest and

in the Doubly Robust Forest. Subsequently, in Figure 14.6 and

Figure 14.7 we report the heterogeneous effect for each value

of the polviews covariate and imputing all other covariates at

their median value. The point estimate and the corresponding

5%-95% confidence intervals that are provided by the forest

methods are depicted.
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Figure 14.6: R-Learner based causal

forest in the welfare example.

Figure 14.7: Doubly Robust honest

regression forest in the welfare ex-

ample.

Notebooks

▶ R Notebook for DML on CATE analyzes ATE of 401(K)

conditional on income.

▶ Python Notebook for CATE Inference analyzes CATE of

welfare experiment and for 401k experiment with Best

Linear Predictors of CATE and with Random Forest and

Causal Forest based methods.

https://www.kaggle.com/victorchernozhukov/dml-for-conditional-average-treatment-effect?scriptVersionId=63137207
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/CATE-inference.ipynb
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