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"la nature ne fait jamais des sauts."

("nature never makes jumps.")

– Gottfried Leibniz [1].

In this chapter we discuss Regression Discontinuity Design

(RDD). First, we introduce the basic idea of Regression Discon-

tinuity (RD). RDDs, when they exist, offer a highly credible way

to identify causal effects. However, leveraging RDDs without

covariates can fall short in practice, whether due to lack of ob-

servations near the RD or the lack of generalizability away from

the RD. We show how modern machine learning methods can

be utilized for estimation in RDDs with very many covariates.
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Figure 17.1: In the sharp RDD the

assignment of treatment depends

in a deterministic way on the un-

derlying . Units with values of the

running variable below a cutoff are

not treated, while units above the

threshold are treated.

Figure 17.2: In the sharp RDD the

assignment of treatment depends

in a deterministic way on the un-

derlying running variable. Units

with values of the running vari-

able below a cutoff are not treated,

while units above the threshold are

treated.

17.1 Introduction

Like many other methods presented in the Advanced Materials

– IV, proxy controls, and DiD – RDDs are also widely used in

empirical work for measuring causal effects in non-experimental

settings where we cannot reliably measure all confounders.

The basic RDD structure relies on a so-called running variable

or score which determines treatment: units whose score is above

a cutoff value are assigned to the treatment, while units with

score below the cutoff are assigned to control. We can always negate the running

variable or rename the treatment if

the relationship is the other way.

Examples are

reward of a scholarship if a student’s grade average exceeds a

certain threshold, bestowing of license to practice (say, medicine

or law) if one’s exam score exceeds a threshold, assignment of

a particular medical treatment if a biomarker is above a cutoff,

or getting social benefits if the income is below some income

threshold.

The intuition for identification is that units marginally above

and below the threshold are comparable in terms of potential

outcomes, since they are the same in all ways except the assign-

ment to treatment, assuming of course that there are no other

discontinuities at the cutoff that would also render them differ-

ent in other ways. The latter continuity in potential outcomes

is the identifying assumption in RDDs. For example, suppose

we are interested in the causal effect of a student receiving a

scholarship on their future academic success. While the future

academic success of students with low grade averages is very

different from those with high averages, with or without a

scholarship, the students right at the cutoff essentially have the

same averages and are comparable, but those just above have a

scholar and those just below do not.

We can also conceive of being above or below as random "luck,"

i.e., exogenous variation. E.g., getting just one more question

right on the exam is a random event that has nothing to do

with the academic preparedness of the student – it can happen

to any one. This is an alternative approach to identification in

RDDs based on local randomization [2].

17.2 The Basic RDD Framework

Setting

In the sharp RDD the binary treatment variable 𝐷𝑖 ∈ {0, 1}
for individual 𝑖 is assigned on basis of a running variable 𝑋𝑖
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Figure 17.3: Identifictation and es-

timation in the sharp RDD.

in a deterministic ("sharp") way: 𝐷𝑖 = 1(𝑋𝑖 ≥ 𝑐), where 1

denotes the indicator function and 𝑐 the cutoff value. An unit

is treated (𝐷𝑖 = 1) if the value of the running variable is above

the threshold and in the control group (𝐷𝑖 = 0) otherwise. For

each individual we observe additionally the outcome 𝑌𝑖 and

potentially some pre-treatment variables 𝑍𝑖 ∈ ℝ𝑝
. The observed

data {𝑊𝑖}𝑛𝑖=1
= {(𝑌𝑖 , 𝑋𝑖 , 𝑍𝑖)}𝑛𝑖=1

are an i.i.d. sample of size 𝑛

from the distribution of𝑊 = (𝑌, 𝑋, 𝑍).

The parameter of interest in RDD is the ATE at the cutoff value

𝑐:

𝜏RD = 𝔼 [𝑌𝑖(1) − 𝑌𝑖(0) | 𝑋𝑖 = 𝑐] .

For identification of this causal effect it is required, that i) the con-

ditional mean functions of the potential outcome𝔼 (𝑌𝑖(𝑡) | 𝑋𝑖 = 𝑥)
are continuous at the cutoff level for 𝑡 ∈ {0, 1} and ii) that the

density of the running variable near the cutoff is positive.

Under these conditions we have

𝜏RD = lim

𝑥↓𝑐
𝔼 (𝑌𝑖 | 𝑋𝑖 = 𝑥) − lim

𝑥↑𝑐
𝔼 (𝑌𝑖 | 𝑋𝑖 = 𝑥) .

lim𝑥↓𝑐 and lim𝑥↑𝑐 denote the right-sided and left-sided limit.

Hence, the jump in the conditional expectation functions𝔼 (𝑌𝑖 | 𝑋𝑖 = 𝑥)
of the observed outcome at the threshold determines the causal

effect of interest.

Estimation

In the sharp RDD we are faced with the problem of estimat-

ing the jump in the conditional mean functions at the cutoff

value which boils down to estimation of the conditional mean

functions at the left and right of the cutoff value. For this non-

parametric methods, like sieves, kernel, and local polynomials

can be used. Local polynomial estimation has become the de-

fault method for this, and therefore we will focus on this method

following the notation and exposition in [3].

Standard RD Estimator: Without covariates, a weighted linear

regression of 𝑌𝑖 on 𝑋𝑖 is estimated locally around the cutoff to

estimate the parameter of interest:

�̂�ℎ,base
= 𝑒⊤

2
argmin

�∈ℝ4

𝑛∑
𝑖

𝐾ℎ (𝑋𝑖)
(
𝑌𝑖 −𝑉⊤𝑖 �

)
2

.
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𝐾 denotes a kernel function, ℎ > 0 the bandwidth, 𝐾ℎ(𝑥) =
𝐾(𝑥/ℎ)/ℎ, 𝑉𝑖 = (1, 𝐷𝑖 , 𝑋𝑖/ℎ, 𝐷𝑖𝑋𝑖/ℎ)⊤ a vector of appropriate

transformations of the running variable, and 𝑒2 = (0, 1, 0, 0)⊤
the unit vector to select the coefficient of 𝐷𝑖 , which is the target

parameter.

In a setting where standard conditions are met, such as the conti-

nuity of the running variable and the bandwidth ℎ approaching

zero at a suitable rate, the estimator �̂�base(ℎ) demonstrates an

approximate normal distribution in large samples with a bias

of the order ℎ2
and a variance of the order of (𝑛ℎ)−1

:

�̂�base (ℎ) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉base

)
.

Bias and variance are given by

𝐵base =
�̄
2

(
𝜕2

𝑥𝔼 [𝑌𝑖 | 𝑋𝑖 = 𝑥]
��
𝑥=0

+ − 𝜕2

𝑥𝔼 [𝑌𝑖 | 𝑋𝑖 = 𝑥]
��
𝑥=0

−

)
and

𝑉base =
�̄

𝑓𝑋(0)
(
𝕍

[
𝑌𝑖 | 𝑋𝑖 = 0

+] + 𝕍 [𝑌𝑖 | 𝑋𝑖 = 0
−]

)
.

Here �̄ and �̄ are kernel constants, defined as

�̄ =
(
�̄2

2
− �̄1�̄3

)
/
(
�̄2�̄0 − �̄2

1

)
for �̄𝑗 =

∫ ∞
0

𝑣 𝑗𝐾(𝑣)𝑑𝑣
and �̄ =

∫ ∞
0

(𝐾(𝑣) (�̄1𝑣 − �̄2))2 𝑑𝑣/
(
�̄2�̄0 − �̄2

1

)
2

, and 𝑓𝑋 denotes

the density of 𝑋𝑖 .

RDD with Covariates: In empirical work, covariates (pretreatment

variables) 𝑍𝑖 are often available that could also be included

in the analysis. This is analogous to randomized control trials,

where additional covariates can reduce the variance of the

estimator and usually do not effect the point estimate. There

are several ways how to adjust the RD estimator for covariates.

[4] analyse in detail the use of additional regressors in RDD.

The standard approach is simply to take up the regressors in

the weighted least squares regression. The modified estimator

is given by:

�̂�ℎ,adj
= 𝑒⊤

2
argmin

(�,𝛾)∈ℝ4+𝑝

𝑛∑
𝑖

𝐾ℎ (𝑋𝑖)
(
𝑌𝑖 −𝑉⊤𝑖 � − 𝑍

⊤
𝑖 𝛾

)
2

. (17.2.1)

𝑍𝑖 denotes the vector of covariates and 𝛾 the corresponding

coefficient vector.

An important insight is, that the estimator can be equiva-

lently written as a RD estimator without covariates, but with a
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covariate-adjusted outcome, 𝑌𝑖 − 𝑍⊤𝑖 �̂�ℎ , where �̂�ℎ is the vector

of linear projection coefficients. The adjusted estimator is then

given by:

�̂�lin (ℎ) =
𝑛∑
𝑖=1

𝑤𝑖(ℎ)
(
𝑌𝑖 − 𝑍⊤𝑖 �̂�ℎ

)
,

with data-dependent weights 𝑤𝑖(ℎ) which depend only on the

realizations of the running variable.

[4] show that �̂�lin (ℎ) is consistent for the RD parameter if the

conditional distribution of the regressors given the running

variable varies smoothly around the cutoff. The surprising

part is that no functional form assumptions on the underlying

conditional expectations are required.

Specifically, if 𝔼 [𝑍𝑖 | 𝑋𝑖 = 𝑥] is twice continuously differen-

tiable around the cutoff, then

�̂�lin (ℎ) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉lin

)
under regularity conditions similar to those for the estimator

without covariates, where the bias term 𝐵base is as above and

the new variance term is

𝑉lin =
�̄

𝑓𝑋(0)
(
𝕍

[
𝑌𝑖 − 𝑍⊤𝑖 𝛾0 | 𝑋𝑖 = 0

+] + 𝕍 [
𝑌𝑖 − 𝑍⊤𝑖 𝛾0 | 𝑋𝑖 = 0

−] )
with 𝛾0, a non-random vector of projection coefficients, the

probability limit of �̂�ℎ (see also [5]).

The linear adjustment estimator generally has smaller asymp-

totic variance than the estimator without covariates, i.e. 𝑉lin ≤
𝑉base which was shown in [5]. See also the discussions in [4].

17.3 RDD with (Many) Covariates

Motivation for Using Covariates

For the identification and estimation of the average treatment

effect at the cut-off value no covariate information is required ex-

cept the running variable, but nevertheless in many applications

additional covariates are collected, which might be exploited
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for the analysis. Following [6], the use of covariates is beneficial

for:

1. Efficiency and power improvements: Similar as in random-

ized control trials, using covariates can increase efficiency

and improve power, as we discussed in the previous sec-

tion. [7] show that the inclusion of covariates in a local

polynomial analysis (additional to the score) can lead to

asymptotic efficiency gains, if carefully implemented.

2. Auxiliary information: In RDD the score determines the

assignment of the treatment and measurement errors in

the running variable can distort the results. Additional

covariates can be exploited to overcome these issues or

deal with missing data problems.

3. Treatment effect heterogeneity: Covariates can be used to

define subgroups in which the treatment effects differ.

4. Other parameters of interest and extrapolation: As the iden-

tified treatment effect in RDD is local at the cutoff, ad-

ditional covariates might help for extrapolation of the

treatment effects or identify other causal parameters.

For an extensive discussion of the use of covariates in RDDs we

refer to [6].

High-Dimensional Covariates

RDD with LASSO estimation

In the case where many covariates are potentially included in

the local polynomial regression of the RDD, Lasso can be used

for variable selection. This has been analyzed by [8] and [5].

Here we follow [5] closely. The idea is that in a first step the

relevant variables are selected with a localized / weighted Lasso

regression. In the second step, the local linear RDD estimation

with the selected covariates from the first step is conducted. In

detail, the procedure is given by:

1. Using a preliminary bandwidth 𝑏 and a penalty parameter

�, one solves the following Lasso version of the weighted least

squares problem by adding a penalty term:

(
�̃, �̃�

)
= argmin

(�,𝛾)∈ℝ4+𝑝

𝑛∑
𝑖=1

𝐾𝑏 (𝑋𝑖)
(
𝑌𝑖 −𝑉⊤𝑖 � − (𝑍𝑖 − �̂𝑍)

⊤ 𝛾
)

2+�
𝑝∑
𝑘=1

�̂�𝑘 |𝛾𝑘 | ,

where
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�̂𝑍 =
1

𝑛

𝑛∑
𝑖=1

𝑍𝑖𝐾𝑏 (𝑋𝑖) and �̂�2

𝑘
=
𝑏

𝑛

𝑛∑
𝑖=1

(
𝐾𝑏 (𝑋𝑖)𝑍(𝑘)𝑖 − �

(𝑘)
𝑍

)
2

are the local sample mean and variance, respectively, of the

covariates.

2. Using a final bandwidth ℎ, one computes the restricted

post-Lasso estimate of 𝜏RD as �̂�ℎ
(
𝐽
)

as in 17.2.1, where 𝐽 ={
𝑘 ∈ {1, . . . , 𝑝} : �̃�(𝑘) ≠ 0

}
is the set of the indices of those

covariates selected in the first step.

Results:

A key assumption, which is widely used for studying Lasso, is

an approximate sparsity condition, which has been already dis-

cussed earlier in this book. To state and adapt this assumption

more formally, the following population regression coefficients

and corresponding residuals for any 𝐽 ⊂ {1, . . . , 𝑝} and band-

width ℎ are defined:

(�0(𝐽 , ℎ), 𝛾0(𝐽 , ℎ)) = argmin

(�,𝛾)
𝔼

[
𝐾ℎ (𝑋𝑖)

(
𝑌𝑖 −𝑉⊤𝑖 � − 𝑍𝑖(𝐽)

⊤𝛾
)

2

]
,

𝑟𝑖(𝐽 , ℎ) = 𝑌𝑖 −𝑉⊤𝑖 �0(𝐽 , ℎ) − 𝑍𝑖(𝐽)⊤𝛾0(𝐽 , ℎ).

Approximate sparsity then means that there exist covariate sets

𝐽 ⊂ {1, . . . , 𝑝} that contain a "small" number 𝑠 ≡ |𝐽 | ≪ 𝑝 of

regressors, and are such that the local correlation between the

corresponding regression errors 𝑟𝑖 (𝐽 , ℎ) and each component

of 𝑍𝑖 is small relative to the estimation error:

max

𝑗=1,...,𝑝

���𝔼 [
𝐾ℎ (𝑋𝑖)𝑍(𝑗)𝑖 𝑟𝑖 (𝐽 , ℎ)

] ��� = 𝑂

(√
log 𝑝

𝑛ℎ

)
.

Moreover, this condition needs to be satisfied for an appropriate

range of bandwidths, so that the sequence 𝐽 does not depend

on the exact choice of ℎ.

Under this and other regularity conditions, [5] can show that the

post-Lasso estimator �̂�ℎ
(
𝐽
)

has the same first-order asymptotic

properties as an infeasible estimator �̂�ℎ (𝐽) that uses the true

target set, and then prove an asymptotic normality result for the

latter. Taken together, this yields the main result of [5], which

is that the post-Lasso estimator �̂�ℎ
(
𝐽
)

of 𝜏RD satisfies
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√
𝑛ℎ

(
�̂�ℎ

(
𝐽
)
− 𝜏RD − ℎ2B𝑛

)
S𝑛

𝑑→N(0, 1),

with asymptotic bias and variance, respectively, such that

B𝑛 ≈
𝐶B

2

(
�′′
𝑌+
− �′′

𝑌−

)
and S2

𝑛 ≈
𝐶S

𝑓𝑋(0)
(
𝜎2

𝑌+
+ 𝜎2

𝑌−

)
.

Here 𝐶B and 𝐶S are constants that depend on the kernel

function 𝐾 only, and

𝑌𝑖 = 𝑌𝑖−𝑍𝑖 (𝐽𝑛)⊤ 𝛾𝑛 , with 𝛾𝑛 =

(
𝜎2

𝑍(𝐽𝑛)− + 𝜎2

𝑍(𝐽𝑛)+

)−1
(
𝜎2

𝑌𝑍(𝐽𝑛)− + 𝜎2

𝑌𝑍(𝐽𝑛)+

)
,

is a covariate-adjusted version of the outcome variable that

uses a vector 𝛾𝑛 that can be thought of as an approximation of

𝛾0 (𝐽 , ℎ) that is independent of the bandwidth. The estimator is

thus first-order asymptotically equivalent to a "baseline" sharp

RD estimator with the covariate-adjusted outcome �̃�𝑖 replacing

the original outcome 𝑌𝑖

Here we used the following notation: For generic random

vectors 𝐴 and 𝐵, we use the notation that �𝐴(𝑥) = 𝔼(𝐴 | 𝑋 =

𝑥), �𝐴𝐵(𝑥) =𝔼 (𝐴𝐵⊤ | 𝑋 = 𝑥) , 𝜎2

𝐴𝐵
(𝑥) = �𝐴𝐵(𝑥)−�𝐴(𝑥)�𝐵(𝑥)⊤;

and write 𝜎2

𝐴
(𝑥) = 𝜎2

𝐴𝐴
(𝑥) for simplicity. For a generic function

𝑓 , we also write 𝑓+ = lim𝑥↓0 𝑓 (𝑥) and 𝑓− = lim𝑥↑0 𝑓 (𝑥) for

its right and left limit at zero, respectively, so that 𝜏RD =

�𝑌+ − �𝑌−.

RDD with generic ML Methods

As mentioned above, instead of using covariates in the weighted

least squares regression (linear adjustment estimator), [4] show

that it is asymptotically equivalent to run a local linear RD

regression with a modified outcome variable 𝑌𝑖 − 𝑍′𝑖𝛾 with

a projection coefficient 𝛾. [3] argue that this approach can be

extended to allow for more general modifications of the form

𝑌𝑖 − �0(𝑍𝑖) for any function �0. Different choices of �0 give

the same estimand, since treatment has no effect on 𝑍, but

may change the performance of an estimator based on such

a modified centered outcome variable. The optimal choice of

�0 with regard to the asymptotic variance is the average of

the conditional expectation functions of the outcome given the

running variables and covariates just to the right and left of the

cutoff value. In fact, that we get the same estimand for any �0
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also means that we must be insensitive to any errors in �0, that

is, we have Neyman-orthogonality. Thanks to this, by using a

DML procedure, modern machine learning methods can then

be used to estimate the function �0 (especially, the optimal one)

in a first step and then the modified outcome is used in a local

RDD regression as second step, all with cross-fitting to ensure

independence between the steps.

[3] extend the approach of [4] to allow for flexible covariate

adjustment in high-dimensional settings using modern machine

learning methods. The estimator they propose employs cross-

fitting and consists of two steps:

1. Randomly split the data {𝑊𝑖}𝑖∈[𝑛] into 𝑆 folds of equal size,

collecting the corresponding indices in the sets 𝐼𝑠 , for 𝑠 ∈ [𝑆]. In

practice, 𝑆 = 5 or 𝑆 = 10 are common choices for the number of

cross-fitting folds. Let �̂(𝑧) = �̂
(
𝑧; {𝑊𝑖}𝑖∈[𝑛]

)
be the researcher’s

preferred estimator of �0, calculated on the full sample; and let

�̂𝑠(𝑧) = �̂
(
𝑧; {𝑊𝑖}𝑖∈𝐼𝑐𝑠

)
, for 𝑠 ∈ [𝑆], be a version of this estimator

that only uses data outside the 𝑠 th fold.

2. Estimate 𝜏 by computing a local linear "no covariates" RD

estimator that uses the adjusted outcome 𝑀𝑖

(
�̂𝑠(𝑖)

)
= 𝑌𝑖 −

�̂𝑠(𝑖) (𝑍𝑖) as the dependent variable, where 𝑠(𝑖) denotes the fold

that contains observation 𝑖 :

�̂�(ℎ; �̂) =
𝑛∑
𝑖=1

𝑤𝑖(ℎ)𝑀𝑖

(
�̂𝑠(𝑖)

)
.

[3] establish that the estimator �̂�(ℎ; �̂) is asymptotically equiva-

lent to the infeasible estimator �̂�(ℎ; �̄) = ∑𝑛
𝑖=1
𝑤𝑖(ℎ)𝑀𝑖(�̄) that

uses the variable 𝑀𝑖(�̄) as the outcome, where �̄ is a determin-

istic approximation of �̂ whose error vanishes in large samples

in some appropriate sense. It then holds that

�̂�(ℎ; �̂) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉(�̄)

)
The asymptotic variance in the above expression is minimized

if �̂ is consistent for �0, in the sense that �̄ = �0. However, the

distributional approximation is valid even if �̄ ≠ �0 because the

moment condition (3.2) holds for (essentially) all adjustment

functions, and not just the optimal one. In that sense, the

procedure allows for misspecification in the first stage. Moreover,

even under misspecification𝑉(�̄) is typically smaller than𝑉base .

Valid confidence intervals can easily be constructed for 𝜏 by

applying standard methods developed for settings without
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covariates to a data set with running variable 𝑋𝑖 and outcome

𝑀𝑖

(
�̂𝑠(𝑖)

)
, ignoring sampling uncertainty about the estimated

adjustment function.

Heterogeneous Treatment Effects and Adjustments

for Heterogeneity

So far we have used covariates in order to increase efficiency

for the same estimand, 𝜏RD that was defined in their absence.

Covariates, however, can also help us understand and and

control for heterogeneity. In particular, at a conceptual level, we

can repeat the setup in Section 17.2 for (almost) every stratum

𝑍 = 𝑧, leading to the CATE at the cutoff :

𝜏C−RD(𝑍) = E[𝑌(1) − 𝑌(0) | 𝑍, 𝑋 = 𝑐]
= lim

𝑥↓𝑐
𝑔(𝑥, 𝑍) − lim

𝑥↑𝑐
𝑔0(𝑥, 𝑍),

where 𝑔0(𝑋, 𝑍) = E[𝑌 | 𝑋, 𝑍].

A potentially policy-relevant summary of 𝜏C−RD(𝑍) is its aver-

age,

𝜏A−C−RD = E𝜏C−RD(𝑍) = E[E[𝑌(1) − 𝑌(0) | 𝑍, 𝑋 = 𝑐]].

For example, if we were to assume that 𝑍 accounts for all

treatment effect heterogeneity across values of the running

variable, that is, 𝑌(1) −𝑌(0) ⊥⊥ 𝑋 | 𝑍, The weaker conditional mean-

independence of 𝑌(1) − 𝑌(0) and

𝕀[𝑋 = 𝑐], given 𝑍, suffices, but is

perhaps harder to reason about.

then we would conclude

that 𝜏A−C−RD = E[𝑌(1) − 𝑌(0)] is the marginal ATE in the

population, not just at the cutoff. More generally, we can say

that 𝜏A−C−RD controls for the heterogeneity modulated by 𝑍,

whether it is all of the heterogeneity or not.

Luckily, we can leverage DML to estimate 𝜏A−C−RD. For ℎ > 0,

consider a smoothed version of the same parameter:

�̃�ℎ =

∫ ∞

−∞
(4𝕀[𝑥 > 𝑐] − 2)𝐾ℎ(𝑥 − 𝑐)E[𝑔0(𝑥, 𝑍)]d𝑥,

where 𝐾ℎ(𝑥) = 𝐾(𝑥/ℎ)/ℎ for a kernel 𝐾. Note that under appro-

priate continuity of 𝑔0(𝑥,𝑊) near but not at 𝑥 = 𝑐, for almost

every 𝑊 , we have that limℎ→0
�̃�ℎ = 𝜏A−C−RD. The quantity

�0 = �̃�ℎ is a simple linear summary of 𝑔0, similar to those we

studied in Chapter 10. We can then apply DML to estimate it
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using the Neyman orthogonal-score

𝜓(𝑊 ;�, �) =
∫ ∞

−∞
(4𝕀[𝑥 > 𝑐] − 2)𝐾ℎ(𝑥 − 𝑐)𝑔(𝑥, 𝑍)d𝑥

+ (4𝕀[𝑥 > 𝑐] − 2)𝐾ℎ(𝑋 − 𝑐)
𝑓 (𝑋 | 𝑍) (𝑌 − 𝑔(𝑋, 𝑍)) − �,

where � = (𝑔, 𝑓 ) are the nuisances, with the true value for the

latter nuisance being 𝑓0, the conditional density of 𝑋 given 𝑍.

Note we can do this for every ℎ, with our MSE to 𝜏A−C−RD (up

to 𝑜𝑝(1/𝑛)) consisting of the variance E[𝜓(𝑊 ; �̃�ℎ , �0)2]/𝑛 and

the squared bias (𝜏A−C−RD − �̃�ℎ)2. What remains is to choose

ℎ to balance the two. Depending on the smoothness of 𝑔0,

we can further reduce the bias by using higher-order kernels

(see [9]) or leveraging higher-order local-polynomial regression

(instead of the local-constant regression used to define �̃�ℎ above).

Depending on how much we can drive the bias down, we can

achieve a better MSE rate.

17.4 Empirical Example

In this section, the effect of the antipoverty program Progre-

sa/Opportunidades on the consumption behavior of families

in Mexico in the early 2000s is analyzed. The analysis is accom-

panied by two notebooks.

The program was intended for families in extreme poverty and

included financial incentives for participation in measures that

improved the family’s health, nutrition and children’s education.

The effect of this program is a widely studied problem in social

and economic sciences and, according to the WHO, was a very

successful measure in terms of reducing extreme poverty in

Mexico.

Eligibility for the program was determined based on a pre-

intervention household poverty-index. Individuals above a

certain threshold received treatment (participation in the pro-

gram), while individuals below the threshold were excluded

and recorded as a control group. All observations above the

threshold participated in the program, which makes the analysis

fall into the standard (sharp) regression discontinuity design.

Data for this application are provided by [10] and in the presen-

tation of the results we follow [3].
∗

∗
Links to notebooks for a replication are provided in the Notebook section.
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Outcome variables are food and non-food consumption, one

year and two years after the implementation of the program.

The treatment variables is defined as eligibility for the cash

transfer (intention-to-treat analysis). The data set contains 1,944

observations and 85 socio-economic pre-treatment variables

like household size, gender, years of education and information

on the house. Without considering pre-treatment variables

participation in the program reduced food consumption by 22.1

units in the year following the intervention. With including

additional pre-treatment variables and using ML methods for

estimation, the point estimates for the effect of the program

remain almost unchanged, but the confidence intervals are

different. For an in-depth discussion of the results, we refer to

the notebooks.

Without any covariate adjustments the effect of the cash transfer

on food consumption one year after the program was introduced

is estimated with −18.6 (s.e. 16.6). Utilizing linear adjustments

for the covariates leads to an estimate of −14.8 and a reduced

variance of 13.7. Using machine learning methods for the ad-

justment leads to to estimates of the effect between −16.0 and

−21.5 and to a reduction of the standard errors compared to the

baseline model (standard errors between 14 and 16). Notably,

zero is contained in all confidence intervals (95% confidence

level).

Notebooks

▶ Python notebook for RDD provides an analysis of the

effect of the antipoverty program Progresa/ Opportu-

nidades on the consumption behavior of families in Mex-

ico in the early 2000s.

▶ R notebook version for RDD

Notes

The ideas behind RDDs and IVs come together in fuzzy RDDs.
Whereas in sharp RDDs the treatment assignment is determin-

istic depending on being above or below the cutoff, in fuzzy

RDDs the assignment mechanism is assigned at random with

a assignment probability that need not be 0 or 1. Nonetheless,

as in the sharp case, there is a discontinuity at the cutoff level.

Then, for the units in an infinitesimal neighborhood of the

cutoff, being just above or just below can be understood as an

https://github.com/CausalAIBook/MetricsMLNotebooks/blob/main/T/T_4_Regression_Discontinuity_on_Progress_Data.ipynb
https://github.com/CausalAIBook/MetricsMLNotebooks/blob/main/T/T_4_Regression_Discontinuity_on_Progress_Data.irnb
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instrument for the treatment, with the assignment probability re-

flecting the compliance and the size of the discontinuity therein

being the strength of the instrument. Almost the same tools for

IV can be used once we localize to the cutoff.

Excellent introductions and surveys for RDD are the "classics"

[11] and [12]. Updates including recent results are [13], [14], [15]

and the monographs [16] and [2].

Study Problems

1. Derive the moment conditions which identify the target

parameter in RDD and show that it is orthogonal with

regard to covariates.

2. In Israel, there is a strict restriction on the maximum size

of public-school classrooms. For several decades in the

previous century, the maximum was 40, such that, say,

having 81 enrolled in a single grade meant a school has to

open three parallel classrooms for that grade so that no

one classroom has more than 40 students. Discuss why

does this induces an RDD for the study of the impact of

class size on academic performance? Assuming we have

the school id, class id, and test scores of each individual

student in, say the 5th grade in 1991, how would you

construct an RDD: what would be the unit of analysis,

the running variable, and the cutoff? How should we

interpret the ATE and to what kind of student population

might it not be relevant for and why? (Once you have

thought about this study question, you can read about

the study that famously leveraged this RDD in [17].)
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