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"Let us divide them in halfes, let us cast lots, that

one half of them may fall to my share, and the other

to yours; I will cure them without bloodletting and

sensible evacuation; but do you do as ye know [. . . ]

we shall see how many Funerals both of us shall

have."

– Jan Baptist van Helmont [1].

In this chapter we begin discussion of causal inference by

focusing on Randomized Control Trials (RCTs). In a random-

ized control trial, units are randomly divided into those that

receive a treatment and those that receive no treatment. Un-

der randomization and other assumptions, the difference in

average outcomes between the treated and untreated groups

is an average treatment (causal) effect (ATE). By considering

pre-treatment covariates, we can improve the precision of the

ATE estimate, explore heterogeneity across subgroups, or both.

We describe methods for doing so and apply them to several

RCTs. We introduce causal diagrams as a means of visualizing

RCTs and their underlying causal assumptions. We conclude

by outlining some limitations of RCTs.
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1: Recall that a random variable 𝑉

is a mapping 𝜔 ↦→ 𝑉(𝜔) from the

underlying state of the world 𝜔 ∈
Ω to the real line (or other metric

space) such that we can assign a

probability law to it.

2: As an example, we could un-

cover individual treatment effects

if we had identical twins that could

be put in treatment and control

groups, and we believed that the

only difference in outcomes be-

tween these twins is induced by

treatment – that is, 𝜔 only depends

on genetic makeup. Such an exam-

ple seems unrealistic at best.

2.1 Potential Outcomes Framework and

Average Treatment Effects

In this section, we discuss the potential outcomes framework

for analyzing causality and treatment effects. It offers an elegant

way to formalize counterfactuals as a mathematical concept.

We begin by introducing the two latent (unobserved) variables

𝑌(1) and 𝑌(0).

They represent the potential or counterfactual random outcomes

for an observational unit when the unit is subject to treatment

(treatment state 𝑑 = 1) or no treatment (control or untreated

state 𝑑 = 0) [2]. For simplicity, we do not consider

multivalued or continuous treat-

ments.

In an economic context, the treatment might be

a training program or a policy intervention, and the outcome

might be an individual’s wage or employment status. In what

follows, it is also useful to introduce the potential response or

structural function:

𝑑 ↦→ 𝑌(𝑑),

which maps the potential treatment state 𝑑 ∈ {0, 1} to the

random potential outcome 𝑌(𝑑).

In this formulation, we have dependence of the potential out-

come 𝑌(𝑑)(𝜔) on the underlying state of the world 𝜔. In our

formalization, 𝜔 will represent randomness across observa-

tional units and from any other sources.
1

The quantities 𝑌(1) and 𝑌(0) are "counterfactual" because they

can’t be simultaneously observed. That is, we generally do

not have identical replicas of the observational units that are

simultaneously subject to both treatment and control. [3] calls

the inability to observe an individual simultaneously under

treatment and control “the fundamental problem of causal

inference”. The inability to observed each individual’s treatment

and control outcome means that causal inference shares many

features with “missing data”problems, see, e.g. [4].

The individual treatment effect is

𝑌(1) − 𝑌(0).

This effect will vary across individuals as well as with other

sources of randomness encoded in 𝜔. As mentioned above,

only one of the two terms is actually observed, and hence it is

generally infeasible to uncover the individual treatment effect.
2

However, we can hope to estimate averages and the distribution
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3: For example, consider a case

where each individual has two

friends. We could define potential

outcomes allowing for spillovers

as 𝑌(𝑑0 , 𝑑1 , 𝑑2) where 𝑑0 denotes

the treatment state of an individ-

ual, 𝑑1 denotes the treatment state

of the individual’s friend 1, and 𝑑2

denotes the treatment state of the

individual’s friend 2.

4: For further reading we refer,

among many others, to [5], [6], [7],

[8] and [9].

of 𝑌(𝑑) at the population level to compute quantities such as

the average treatment effect (ATE):

𝛿 = E[𝑌(1) − 𝑌(0)] = E[𝑌(1)] − E[𝑌(0)].

Let 𝐷 denote the actual assigned treatment, a random variable,

which takes a value of 1 if the observational unit participated in

the treatment and 0 otherwise.

Assumption 2.1.1 (Consistency) We observe

𝑌 := 𝑌(𝐷).

For example, if treatment (𝐷 = 1) corresponded to completion

of a job training program and control (𝐷 = 0) corresponded

to not completing the program, Assumption 2.1.1 says that the

observed wage outcome is equal to 𝑌(1) for a given person

if she has completed the program (has 𝐷 = 1) and is equal

to 𝑌(0) if this person has not completed the training program

(has 𝐷 = 0). Assumption 2.1.1 seems almost tautological, but it

importantly rules out hidden variation in treatment. That is, it

requires that the treatment and control states are well-defined

and clearly aligned with the observed treatment status, 𝐷.

Assumption 2.1.2 (No Interference) Potential outcomes for any
observational unit depend only on the treatment status of that unit
and not on the treatment status of any other unit.

Assumption 2.1.2 has implicitly been captured in our definition

of potential outcomes,𝑌(𝑑), which give the outcome of each unit

when the unit is subject to treatment state 𝑑. This formulation

rules out scenarios where the treatment given to one unit

may impact the outcome of a different unit. Such spillovers

could occur, for example, on social networks where treating an

individual could impact all of that individual’s friends. Some

forms of spillovers are readily accommodated by expanding the

definition of treatment and correspondingly adjusting definition

of potential outcomes,
3

but treating these extensions is beyond

the scope of this book.
4

Assumptions 2.1.1 and 2.1.2 encapsulate what is often referred

to as the Stable Unit-Treatment Value Assumption (SUTVA);

see, e.g. Imbens and Rubin [10].

The following analytical example may help gain better under-

standing of the potential outcomes framework.
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Example 2.1.1 [Analytical Example] Consider the following

model

𝑌(1) := �1 + 𝜖1

𝑌(0) := �0 + 𝜖0

𝐷 := 1(� > 0),
𝑌 := 𝑌(𝐷),

where �0 and �1 are constants, and (𝜖0, 𝜖1, �) are jointly

normal random stochastic disturbances with mean 0 and

covariance matrix Σ. Here, � represents factors that influence

selection into the treatment state. In this example E[𝑌(1)] = �1,

E[𝑌(0)] = �0, and the ATE is 𝛿 = �1 − �0. Importantly, only

𝐷 and 𝑌 are observed.

Under Assumption 2.1.1, population data directly provide the

conditional averages

E[𝑌 | 𝐷 = 𝑑] = E[𝑌(𝑑) | 𝐷 = 𝑑], for 𝑑 ∈ {0, 1}.

The difference of the two averages gives us the average predictive

effect (APE) of treatment status on the outcome:

𝜋 = E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0].

It measures the association of the treatment status with the

outcome.

While the APE is identified – meaning computable from the

population data – it may seem surprising (or not at all) that the

APE in general does not agree with the ATE 𝛿:

𝛿 ≠ 𝜋. (2.1.1)

The difference between the APE and ATE is generally said to

be due to selection bias. The meaning of selection bias is clari-

fied through the following example, and clarified theoretically

below.

Example 2.1.2 (Selection Bias in Observational Data) Suppose

we want to study the impact of smoking marĳuana on life

longevity. Suppose that smoking marĳuana has no causal

effect on life longevity:

𝑌 = 𝑌(0) = 𝑌(1),
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so that

𝛿 = E[𝑌(1)] − E[𝑌(0)] = 0.

However, the observed smoking behavior, 𝐷, is not assigned

in an experimental study. Suppose that the behavior determin-

ing 𝐷 is associated with poor health choices such as drinking

alcohol, which are known to cause shorter life expectancy,

so that E[𝑌 | 𝐷 = 1] < E[𝑌 | 𝐷 = 0]. In this case, we have

negative a predictive effect:

𝜋 = E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0] < 0 = 𝛿,

which differs from the true causal effect 𝛿 = 0.

To sum up, in the smoking example, the chosen "treatment"

variable𝐷 is potentially negatively associated with the potential

health outcome, inducing the selection bias – the difference

between the predictive effect and the causal effect.

Example 2.1.3 (Analytical Version of the Smoking Example)

To capture dependence between 𝑌(𝑑) and � in the smoking

context analytically, we can go back to Example 2.1.1, and

make variables 𝜖𝑑 and � be negatively associated:

E[𝜖𝑑�] < 0.

The negative association between the 𝜖𝑑 and � then results in

the observed smoking status, 𝐷, being negatively associated

with the potential outcomes 𝑌(𝑑). Specifically, we have

E[𝑌 |𝐷 = 1] < E[𝑌 |𝐷 = 0],

which can be verified through additional analytical calcula-

tions or via simulation experiments (a homework).

It is useful to emphasize the main reason for having selection

bias is that

E[𝑌(𝑑)|𝐷 = 1] ≠ E[𝑌(𝑑)]

whenever 𝐷 is not independent of 𝑌(𝑑). If 𝐷 and 𝑌(𝑑) were

independent,

E[𝑌(𝑑)|𝐷 = 1] = E[𝑌(𝑑)]

would hold since in this case 𝐷 is uninformative about the

potential outcome and drops out from the conditional expecta-

tion.

To sum up, the problem with observational studies like our

contrived Example 2.1.2 is that the "treatment" variable 𝐷
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is determined by individual behaviors which may be linked

to potential outcomes. This linkage generates selection bias

- the disagreement between APE and ATE. There are many

ways of addressing selection bias, one of which is through an

experiment, where we randomly assign the treatment to the

units.

Random Assignment/Randomized Controlled

Trials

A way to clearly remove selection bias is through random

assignment of treatment.

Assumption 2.1.3 (Random Assignment/Exogeneity) Suppose
that treatment status is randomly assigned. Namely, 𝐷 is statisti-
cally independent of each potential outcome 𝑌(𝑑) for 𝑑 ∈ {0, 1},
which is denoted as

𝐷 ⊥⊥ 𝑌(𝑑)

and 0 < P(𝐷 = 1) < 1.

This assumption states that the treatment assignment mech-

anism is purely random, and ensures that there are units in

treatment and in control.

Example 2.1.4 (Analytical Example Continued) In the analyti-

cal example 2.1.1, Assumption 2.1.3 is satisfied if the stochastic

shock � determining 𝐷 is independent of stochastic shocks

𝜖0 and 𝜖1 determining 𝑌(1) and 𝑌(0), i.e.

� ⊥⊥ (𝜖0, 𝜖1).

A key result is that selection bias is removed under Assumption

2.1.3 which allows us to learn summaries of causal effects.

Theorem 2.1.1 (Randomization Removes Selection Bias) Under
Assumption 2.1.3, the average outcome in treatment group 𝑑 recovers
the average potential outcome under the treatment status 𝑑:

E[𝑌 | 𝐷 = 𝑑] = E[𝑌(𝑑) | 𝐷 = 𝑑] = E[𝑌(𝑑)],

for each 𝑑 ∈ {0, 1}. Hence the average predictive effect and average
treatment effect coincide:

𝜋 := E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0]
= E[𝑌(1)] − E[𝑌(0)] =: 𝛿.
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5: Synonyms are experiments and

A/B tests.

6: Of course, RCTs must be cor-

rectly done to guarantee Assump-

tion 2.1.3. For example, RCTs where

experimental protocols are not fol-

lowed continue to suffer from se-

lection bias. There are also exam-

ples, quasi-experiments, where we

may believe that Assumption 2.1.3

is plausible that do not correspond

to explicit designed experiments.

7: Indeed, we can regress 𝑌 on 𝐷

and 1 − 𝐷; that is, estimate the

model𝑌 = �1𝐷+�0(1−𝐷)+𝑈.We

can then apply the inferential ma-

chinery developed in the previous

chapter.

Assumption 2.1.3 is often not plausible for observational data.

In a randomized controlled trial (RCT)
5

, the aim is to ensure the

plausibility of Assumption 2.1.3 by direct random assignment

of treatment 𝐷. That is, subjects are randomly assigned a treat-

ment state𝐷 by the experimenter without regard to any of their

characteristics. Because the random assignment of the treat-

ment is unrelated to all subject characteristics by construction,

well-executed RCTs guarantee that Assumption 2.1.3 is satisfied.

Because of this property, many consider RCTs as the gold stan-

dard in causal inference, and RCTs are routinely employed in a

variety of important settings.
6

Examples include evaluating the

efficacy of medical treatment, vaccinations, training programs,

marketing campaigns, and other kinds of interventions.

Example 2.1.5 (No Selection Bias in Experimental Data) Sup-

pose that in the smoking example (Example 2.1.2), we worked

with data where smoking or non-smoking was generated by

perfectly enforced random assignment. In this case, we would

have agreement between average predictive and treatment

effects: 𝜋 = 𝛿. While it is difficult to imagine a long-run

RCT where study participants could be forced to smoke or

not smoke marĳuana (we discuss such limitations as well

as ethical considerations in Section 2.4), RCTs are routinely

employed in a variety of other important settings.

Statistical Inference with Two Sample Means

Inference is based on the independent sample {(𝑌𝑖 , 𝐷𝑖)}𝑛𝑖=1

obtained from an RCT, where index 𝑖 denotes the observational

unit. We assume that each (𝑌𝑖 , 𝐷𝑖) has the same distribution

as (𝑌, 𝐷). Estimation of the two means �𝑑 = E[𝑌 | 𝐷 = 𝑑] for

𝑑 = 0 and 𝑑 = 1 can be done by considering two group means

�̂𝑑 =
𝔼𝑛[𝑌1(𝐷 = 𝑑)]
𝔼𝑛[1(𝐷 = 𝑑)] .

The two means example can also be treated as a special case

of linear regression,
7

but we find it instructive to work out

the details directly for the two group means. We provide these

details in Section 2.A.

Under mild regularity conditions, we have that

√
𝑛

(
�̂0 − �0

�̂1 − �1

)
a∼ 𝑁(0, V),
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8: The approximation follows from

application of the first order Tay-

lor expansion and continuity of the

derivative ∇ 𝑓 at �.

Figure 2.1: Tozinameran (Pfizer-

BioNTech Covid-19 vaccine); Image

Source: Wikipedia / Arne Müseler

where

V =

(
Var(𝑌 |1(𝐷=0))

𝑃(𝐷=0) 0

0
Var(𝑌 |1(𝐷=1))

𝑃(𝐷=1)

)
so that �̂� = �̂1 − �̂0 obeys

√
𝑛(�̂� − 𝛿) a∼ 𝑁(0, V11 + V22).

To use this result in practice, variance components are usually

estimated using the plug-in principle, which amounts to using

the sample analogues of the expressions above.

Sometimes we are interested in relative effectiveness of treat-

ment effects (for example, vaccine efficiency):

𝑓 (�) = (�1 − �0)/�0 = 𝛿/�0.

Relative effectiveness can be estimated by �̂�/�̂0 = 𝑓 (�̂), where

�̂ = {�̂𝑑}𝑑∈{0,1} and � = {�𝑑}𝑑∈{0,1}, with approximate distri-

bution obtained using the delta method:

√
𝑛( 𝑓 (�̂) − 𝑓 (�)) ≈ 𝐺′

√
𝑛(�̂ − �) a∼ 𝑁(0, 𝐺′V𝐺),

where 𝐺 = ∇ 𝑓 (�), �̂ = (�̂0, �̂1)′, � = (�0, �1).8 .

Pfizer/BioNTech Covid Vaccine RCT

Pfizer/BNTX was the first vaccine approved for emergency use

in the EU and US to reduce the risk of Covid-19 disease. See the

Food and Drug Administration (FDA) briefing for details about

the RCT and the summary data. Volunteers were randomly

assigned to receive either a treatment (2-dose vaccination) or a

placebo, without knowing which they received, and the doctors

making the diagnoses did not know whether a given volunteer

received a vaccination or not. In other words, the trial was a

double-blind randomized control trial. The results of the study

are presented in the following table. Vaccination RCT R Notebook and

Vaccination RCT Python Notebook

contain the analysis of the Pfizer-

BioNTech Covid-19 Vaccine RCTs.

https://www.fda.gov/media/144245/download
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
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9: In this example, we don’t need

the underlying individual data

to evaluate the effectiveness of

the vaccine because the potential

outcomes are Bernoulli random

variables with mean E[𝑌(𝑑)] and

variance Var(𝑌(𝑑)) = E[𝑌(𝑑)(1 −
E𝑌(𝑑))].

10: The analysis in the FDA table

is based on the inversion of exact

binomial tests, the Cornfield proce-

dure.

Figure 2.2: The aggregate data from

the Pfizer RCT; source: FDA brief-

ing.

We see that the rate of Covid-19 infection was relatively low at

the time. Specifically, the treatment group saw 9 Covid-19 cases

per 19,965, while the control group saw 169 cases per 20,172.

The estimated average treatment effect is about

−792.7 cases per 100,000,

and the 95% confidence band is
9

[−922,−664].

Under Assumptions 2.1.3 and 2.2.1 the confidence band suggests

that the Covid-19 vaccine caused a reduction in the risk of

contracting Covid-19.

We also compute the Vaccine Efficacy metric, which according

to [11], refers to the following measure:

VE =
Risk for Unvaccinated - Risk for Vaccinated

Risk for Unvaccinated

.

It describes the relative reduction in risk caused by vaccination.

Estimating the VE is simple as we can plug-in the estimated

group means. We can compute standard errors using the delta

method or by simulation. We obtain that the overall vaccine

efficacy is 94.6%, replicating the results shown in Figure 2.2.

Our 95% confidence interval for VE, based on the normal

approximation, is

[90.9%, 98.2%],

which differs only slightly from the FDA briefing table.
10

Remark 2.1.1 We notice that the confidence intervals for the

VE for the two age groups of seniors are very wide, so to

increase precision we pool them together and calculate the

effectiveness of the vaccine for the two groups that are 65 or

older. The resulting VE estimate is 95% and the two-sided

https://www.fda.gov/media/144245/download
https://www.fda.gov/media/144245/download
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confidence interval based on the normal approximation is

[82%, 106%]

A more refined approach is possible, based on the inversion

of exact binomial ratio Cornfield tests [12], which we report

in Vaccination RCT R Notebook and Vaccination RCT Python

Notebook. This approach, using Vaccination RCT R Notebook,

yields a confidence interval of

[69%, 99%].

The reason is that the accumulated counts of binomials are too

few for the Gaussian approximations to provide a high-quality

approximation, so the exact binomial ratio test inversion

delivers a more accurate confidence interval.

2.2 Pre-treatment Covariates and

Heterogeneity

Sometimes we also have additional pre-treatment or pre-determined
covariates𝑊 . We might be interested in either using these co-

variates to estimate average effects more precisely or to describe

heterogeneity of the treatment effects. For example, we might

be interested in the impact of a treatment across age or income

groups.

For this purpose, we consider conditional average treatment

effects (CATE):

𝛿(𝑊) = E[𝑌(1) | 𝑊] − E[𝑌(0) | 𝑊],

which compare the average potential outcomes conditional on

a set of covariates𝑊 .

We can directly learn the conditional predictive effects (CAPE),

𝜋(𝑊) = E[𝑌 | 𝐷 = 1,𝑊] − E[𝑌 | 𝐷 = 0,𝑊],

from population data. However, these CAPE will generally not

agree with the CATE. One assumption that will be sufficient

for the CAPE and CATE to agree is having treatment assigned

randomly and independently of covariates. As before, the use

of RCTs help ensure the plausibility of this assumption.

Assumption 2.2.1 (Random Assignment Independent of Co-

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
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variates) Suppose that treatment status is randomly assigned.
Namely, 𝐷 is statistically independent of both the potential out-
comes and a set of pre-determined covariates:

𝐷 ⊥⊥ (𝑌(0), 𝑌(1),𝑊),

and 0 < P(𝐷 = 1) < 1.

This assumption spells out that, if we plan to use covariates

in the analysis, randomization has to be made with respect to

these covariates as well. In practice, it is often tempting to use

post-treatment covariates, but the use of such variables runs

the danger of violating Assumption 2.2.1. In the extreme case,

conditioning on the post-treatment observed outcome 𝑌, we

find that 𝜋(𝑌) = 0, even when there is a treatment effect. In

a less extreme case, conditioning on post-treatment variables

related to the outcome can "control-away" part of the effect,

diminishing estimates.

A common scenario where accidentally using a post-treatment

covariate may occur is when researchers encounter missing

data from imperfect data collection in following-up with control

and treated units to collect demographic information. When we

drop observations with missing data, we implicitly condition

on a post-treatment variable (missingness) which can cause

violations of Assumption 2.2.1.

The desire to assess randomization with respect to covariates

motivates the following diagnostic procedure. For random variables 𝐴 and 𝐵, 𝐴 ∼
𝐵 denotes that 𝐴 and 𝐵 have the

same distribution.

Testing Covariance Balance. The random assignment as-

sumption induces covariate balance. Namely, the distribu-

tion of covariates should be the same under both treatment

and control:

𝑊 |𝐷 = 1 ∼𝑊 |𝐷 = 0,

and, equivalently,

𝐷 |𝑊 ∼ 𝐷.

A useful implication is that 𝐷 is not predictable by𝑊 :

E[𝐷 | 𝑊] = E[𝐷].

This latter conditions is testable using regression tools. It

amounts to saying that the 𝑅2
of a regression of 𝐷 on𝑊 is

0.

Under Assumption 2.2.1, Theorem 2.1.1 continues to hold, but

we now have a stronger result.
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11: See Section 2.B for details.

12: Theoretically, this is imple-

mented by redefining 𝑊 := 𝑊 −
E[𝑊]. In estimation, this is imple-

mented by redefining 𝑊𝑖 := 𝑊𝑖 −
𝔼𝑛[𝑊].

Theorem 2.2.1 (Randomization with Covariates) Under As-
sumption 2.2.1, the expected value of 𝑌 conditional on treatment
status 𝐷 = 𝑑 and covariates𝑊 coincides with the expected value
of potential outcome 𝑌(𝑑) conditional on covariates𝑊 :

E[𝑌 | 𝐷 = 𝑑,𝑊] = E[𝑌(𝑑) | 𝐷 = 𝑑,𝑊] = E[𝑌(𝑑)|𝑊],

for each 𝑑. Hence the conditional predictive and average treatment
effects agree:

𝜋(𝑊) = 𝛿(𝑊).

Regression and Statistical Inference for ATEs

Empirical researchers often base statistical inference on the

ATE using the classical additive linear regression model, where

covariates enter additively in the model. This approach has

some good practical properties and often empirically leads to

improvements in precision over the simple two-means approach,

though this precision improvement is not guaranteed. Another

approach that we will emphasize is the interactive regression

approach, where de-meaned covariates are also interacted

with the base treatment. Including interactions of de-meaned

covariates with the treatment always improves precision, and it

also allows us to discover treatment effect heterogeneity.

Classical Additive Approach: Improving Precision

Under Linearity

We begin explaining the classical additive approach. Here, to

simplify the exposition, we make the strong assumption that

the conditional expectation function is exactly linear:

E[𝑌 | 𝐷,𝑊] = 𝐷𝛼 + 𝛽′𝑋, (2.2.1)

where 𝑋 = (1,𝑊) contains an intercept and pre-treatment

covariates𝑊 . This setup is clearly restrictive, but the statistical

inference result will be valid without this assumption.
11

Later

in the book, we will consider fully nonlinear models.

We assume that covariates are centered:
12

E[𝑊] = 0.

By Assumption 2.2.1, there is covariate balance:

E[𝑊 | 𝐷 = 1] = E[𝑊 | 𝐷 = 0].
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13: Relative ATE is often called lift
in business applications.

Using centered covariates implies that

E[𝑌(0)] = E[E[𝑌 | 𝐷 = 0, 𝑋]] = 𝛽1

E[𝑌(1)] = E[E[𝑌 | 𝐷 = 1, 𝑋]] = 𝛽1 + 𝛼.

That is, the average outcome in the untreated state is 𝛽1, and

the average treatment effect 𝛿 = E[𝑌(1)] − E[𝑌(0)] equals 𝛼.

Equation (2.2.1) implies that

𝑌 = 𝐷𝛼 + 𝛽′𝑋 + 𝜖, 𝜖 ⊥ (𝐷, 𝑋), (2.2.2)

implying that 𝛼 coincides with the coefficient in the BLP of 𝑌

on 𝐷 and 𝑋. In fact, even if we don’t assume the model (2.2.1),

we still have that 𝛼 = 𝛿. That is, the projection coefficient 𝛼
recovers the ATE 𝛿 without the linearity assumption as we

detail in Section 2.B. Furthermore the statistical inference result

stated below will hold without requiring linear conditional

expectation functions as it is simply a statement about inference

on the BLP.

We are interested in statistical inference on the ATE and Relative

ATE
13

𝛼 and 𝛼/𝛽1.

Under regularity conditions, application of the OLS theory

from Chapter 1 gives us( √
𝑛(�̂� − 𝛼)√
𝑛(�̂�1 − 𝛽1)

)
a∼ 𝑁(0, V),

where covariance matrix V has components:

V11 =
E[𝜖2�̃�2]
(E[�̃�2])2

, V22 =
E[𝜖2

1̃
2]

(E[1̃2])2
, V12 = V21 =

E[𝜖2�̃�1̃]
E[1̃2]E[�̃�2]

,

where �̃� = 𝐷−E[𝐷] is the residual after partialling out 𝑋 from

𝐷 linearly and 1̃ := (1 − 𝐷) is the residual after partialling out

𝐷 and𝑊 from 1.

We also obtain the approximate normality for the Relative ATE

using the delta method:

√
𝑛(�̂�/�̂�1 − 𝛼/𝛽1) a∼ 𝑁(0, 𝐺′V𝐺),

where

𝐺 = [1/𝛽1,−𝛼/𝛽2

1
]′.
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14: Here𝑈 = 𝑌 − 𝛼𝐷 − 𝛽1 obeys

E[𝑈 | 𝐷 = 𝑑] = E[𝑌(𝑑) − 𝛼𝑑 − 𝛽1 | 𝐷 = 𝑑]
= E[𝑌(𝑑) − 𝛼𝑑 − 𝛽1] = 0,

invoking random assignment and

the definition of 𝛼 and 𝛽1.

15: Verify this as a reading exercise.

16: We always use robust vari-

ance formulas throughout the book.

However, the default inferential al-

gorithms in R and Python often

report the classical Student’s for-

mulas as variances, which critically

rely on the linearity assumption.

Improvement in Precision under Linearity

Now we explain the role of covariates in potentially delivering

improvements in precision of estimating the ATE. The under-

lying idea is that of "denoising." This improvement, however,

hinges on the linear model (2.2.1). In the next section, we will

obtain improvement without linearity assumptions.

We consider what happens when we do not include covariates

in the regression. In this case, the OLS estimator �̄� estimates

the projection coefficient 𝛼 in the BLP using (1, 𝐷) alone:
14

𝑌 = 𝛼𝐷 + 𝛽1 +𝑈, E[𝑈] = E[𝑈𝐷] = 0,

where the noise

𝑈 = 𝛽′(𝑋 − E[𝑋]) + 𝜖

contains the part of 𝑌 that is linearly predicted by 𝑋, 𝛽′(𝑋 −
E[𝑋]) = 𝛽′𝑋 − 𝛽1. We then have that �̄� obeys

√
𝑛(�̄� − 𝛼) a∼ 𝑁(0, V̄11), V̄11 =

E[𝑈2�̃�2]
(E[�̃�2])2

.

Under the linear model (2.2.1), it follows that

V11 ≤ V̄11,

with the inequality being strict ("<") if Var(𝛽′𝑋) > 0.
15

That

is, under (2.2.1), using pre-determined covariates improves the

precision of estimating the ATE 𝛼.

However, this improvement theoretically hinges on the correct-

ness of the additive linear model. Statistical inference on the

ATE based on the the normal approximation provided above

remains valid without this assumption as long as robust stan-

dard errors are used.
16

However, the precision can be either

higher or lower than that of the classical two-sample approach

without covariates. That is, without (2.2.1), V11 and V̄11 are not

generally comparable.

Remark 2.2.1 While the inferential result we derived is ro-

bust with respect to the linearity assumption on the CEF, the

improvement in precision itself is not guaranteed in general

and hinges on the validity of the linearity assumption. We

provide simulation examples where controlling for prede-

termined covariates linearly lowers the precision (increases

robust standard errors) in Covariates in RCT R Notebook and

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-sim-precision-adj.irnb
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17: A technical treatment refers to

any variable obtained as a trans-

formation of the original treatment

variable.

Covariates in RCT Python Notebook.

The Interactive Approach: Always Improves

Precision and Discovers Heterogeneity

Covariates in RCT R Notebook and

Covariates in RCT Python Note-

book explore the use of covariates

to both improve precision and learn

about heterogeneity via a simula-

tion experiment.

We can also consider estimation of CATE through the lens of an

interactive linear regression model, which interacts treatment

indicator 𝐷 with regressors 𝑋 constructed from original raw

regressors 𝑊 . Including these interactions respects the logic

of approximating the conditional expectation of 𝑌 given 𝐷

and raw regressors using linear functional forms. To simplify

exposition, we first assume that the interactive model is exactly

correct for the CEF:

E[𝑌 | 𝐷,𝑊] = 𝛼′𝑋𝐷 + 𝛽′𝑋. (2.2.3)

In Section 2.C, we explain how this approach works without

this assumption.

As before, we assume

𝑋 = (1,𝑊 ′)′, E[𝑊] = 0,

which can be achieved in practice by recentering. Here, we

recover CATE via

𝛿(𝑊) = E[𝑌(1) | 𝑊] − E[𝑌(0) | 𝑊]
= E[𝑌 | 𝐷 = 1,𝑊] − E[𝑌 | 𝐷 = 0,𝑊] = 𝛼′𝑋.

Using that E𝑊 = 0, the ATE is then

𝛿 = E[𝛿(𝑊)] = E[𝛼′𝑋] = 𝛼1,

where 𝛼1 is the first component of 𝛼. The function 𝛼′
2
𝑊 , where

𝛼2 is the vector all elements of 𝛼 excluding 𝛼1, therefore de-

scribes the deviation of CATE away from the ATE.

We can verify that 𝛼 is the coefficient of the linear projection

equation:

𝑌 = 𝛼′𝐷𝑋 + 𝛽′𝑋 + 𝜖, 𝜖 ⊥ (𝑋, 𝐷𝑋).

Therefore, we can treat

�̄� := 𝐷𝑋

as a vector of technical treatments
17

and invoke the "partialling

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-sim-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-sim-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-sim-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-sim-precision-adj.ipynb
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out" approach for inference on components of 𝛼. The variance

formulas are given in Section 2.C.

Remark 2.2.2 (Improvement in Precision Guarantee) Unlike

the previous approach, the "interactive" approach always

delivers improvements in precision for estimating 𝛿, even if

the linearity in (2.2.3) does not hold; this was demonstrated by

Lin [13]. Section 2.C explains this point in detail and provides

a deeper dive into the properties of the interactive approach

without assuming correct linear specification of the CEF.

Reemployment Bonus RCT

Reemployment Bonus RCT R Note-

book and Reemployment Bonus

RCT Python Notebook explore the

use of covariates to improve preci-

sion and learn about heterogeneity

in a Reemployment Bonus RCT.

Here we re-analyze the Pennsylvania re-employment bonus

experiment [14], which was conducted in the 1980s by the U.S.

Department of Labor to test the incentive effects of alternative

compensation schemes for unemployment insurance (UI). In

these experiments, UI claimants were randomly assigned either

to a control group or one of five treatment groups. We focus

our discussion on treatment group 4. In the control group the

current rules of the UI applied. Individuals in the treatment

groups were offered a cash bonus if they found a job within some

pre-specified period of time (qualification period), provided

that the job was retained for a specified duration; see the Penn

Data Codebook for further details on the data.

We consider the

▶ classical 2-sample approach, no adjustment (CL)

▶ classical linear regression adjustment (CRA)

▶ interactive regression adjustment (IRA)

▶ interactive regression adjustment with double lasso (par-

tialling out by lasso) (IRA-DL)

We use the last approach in the spirit of exploration and ex-

perimentation. We describe the last approach and establish its

validity in Chapter 4.

Estimates of the ATE on (log) unemployment duration and

corresponding estimated standard errors are given in Table

2.1.

CL CRA IRA IRA-DL

Estimate -0.0855 -0.0797 -0.0755 -0.0789

Std. Error 0.0359 0.0356 0.0356 0.0356

Table 2.1: Estimates of the ATE of

the reemployment bonus on log

unemployment duration..

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt
http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt
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The different estimators deliver fairly similar point estimates

suggesting that treatment group 4 experiences an average de-

crease in unemployment duration of around 8%. The three

regression estimators deliver estimates that are slightly more

precise (have lower standard errors) than the simple difference

in means estimator.

We also see that the regression estimators offer slightly lower

estimates of the ATE than the difference in means estimator.

These differences likely occur due to minor imbalances in the

treatment allocation: People older than 54 tended to receive the

treatment more than other groups of qualified UI claimants

during the later period of the experiment. Loosely speaking,

the regression estimators try to correct for this imbalance by

"partialling out" the effect of this oversampling See Reemployment Bonus RCT

R Notebook and Reemployment

Bonus RCT Python Notebook for

the results from the balance check.

and averaging

over differences net of these "imbalancing" effects. We will

explain how regression adjustment corrects for imbalances in

Chapter 5.

2.3 Drawing RCTs via Causal Diagrams

RCTs can be visualized using causal diagrams. These enable

us to simply and clearly show the causal assumptions that

underpin our model for retrieving treatment effects. Causal

diagrams were introduced as early as 1920s by Sewall and Philip

Wright ([15],[16]) and emerged as a fully formal tool due to the

work of Judea Pearl and James H. Robins ([17], [18]).

In causal diagrams, random variables are denoted by nodes;

and arrows between nodes represent causal effects. In our RCT

set-up, we have that the assigned treatment variable causes

outcome variable 𝑌, and the pre-treatment variables 𝑊 also

cause the outcome variable𝑌, but they don’t cause the treatment

assignment 𝐷. This causal diagram is illustrated in Figure 2.3

below.

𝐷 𝑌

𝑊
Figure 2.3: Causal Diagram for a

RCT

Figure 2.4 depicts a version of the diagram that also includes

potential outcomes as nodes.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
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𝐷 𝑑 𝑌(𝑑)

𝑊
Figure 2.4: A Causal Diagram for

the RCT Research Design

In Figure 2.4, we show the potential outcomes 𝑌(𝑑) as a single

node. The pre-treatment covariates affect this node, which is

represented by the arrow from𝑊 to the𝑌(𝑑) node. The assigned

treatment variable 𝐷 is independent of the node 𝑌(𝑑), which is

shown by the absence of an arrow connecting the two nodes.

The arrow from 𝑑 to 𝑌(𝑑) shows the causal dependency of

𝑌(𝑑) on the deterministic node 𝑑. The assigned treatment 𝐷

is also shown to be independent of the node𝑊 . The potential

outcome process 𝑑 ↦→ 𝑌(𝑑) and treatment assignment jointly

determine the realized outcome variable 𝑌 via the assignment

𝑌 := 𝑌(𝐷).

We further develop the use of these concepts and the use of

causal diagrams as a formal tool in Chapter 7 and Chapter 8.

2.4 The Limitations of RCTs

Here, we briefly outline some of the primary limitations of RCTs.

We first consider threats to identification, outlining settings

in which the stable unit treatment value assumption (SUTVA),

an important assumption that underpins causal inference in

an RCT setting, is unlikely to hold, and the implications for

inference. We then address ethical and practical concerns in

RCT implementation and generalizability.

Externalities, Stability, and Equilibrium Effects

The traditional formulation of Rubin’s causal model relies

on SUTVA as described in Section 2.1. Part of SUTVA is the

requirement that the potential outcomes of one unit should be

unaffected by the assignment of treatments to other units [19].

In the following, we consider some cases where this assumption

might not hold.

In a vaccine example, this assumption holds if treatment and

control populations are "small" (infinitesimal) subpopulations of

the entire general population. Our methods measure the average

vaccine effects in these settings. However, if we vaccinate a
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18: Because SUTVA does not hold

in the vaccination context, it is cus-

tomary to use relative measures

of impact like "vaccine efficiency"

because they may be a somewhat

more stable measure when general-

izing from "small" treated subpop-

ulations to a "large" treated popu-

lation.

sufficiently large percentage of people, reaching herd immunity,

the outcomes for the control group would be essentially the

same as outcomes for the treated. SUTVA therefore would not

hold.
18

In economics, we refer to such spillover effects as externalities

or, in some contexts, as general equilibrium effects. For example,

there is a positive externality created by people who take the

vaccine (and people that don’t take vaccine "free ride," once the

vaccination level is high enough). Consider another example.

We might want to study the earning effect of getting a college

degree versus not having a college degree. If treatment will

target a relatively small subpopulation of people, there likely

won’t be any large general equilibrium wage effects. On the other

hand, if the treatment will target a large subpopulation, the

equilibrium wage will likely adjust (the college wage premium

might decrease, for example). In another example, the outcomes

for one individual in large-scale training programs may be

affected by the number of people trained to perform the same

job.

Ethical, Practical, and Generalizability Concerns

Many RCTs are infeasible because implementing them would

be unethical. The general ethical principles and guidelines

for research involving human subjects are set out in the 1978

Belmont report ([20]). The key ethical principles are "Respect

for persons," "Beneficence," and "Justice." Human subject trials

are subject to regulation by an institutional review board, which

determines whether the trial is ethical with reference to these

guiding principles, or whether it should be prevented from

registering.

For example, we previously considered a hypothetical RCT

where individuals are assigned to a smoking treatment group.

The trial would violate the principle of "beneficence" as the

researcher might be causing physical harm to study participants

by assigning them to smoking. Thus, RCTs are rarely a feasible

means of retrieving the causal effects of harmful interventions

as they tend to be unethical.

RCTs may also face practical issues. They can be prohibitively

expensive when the treatment is costly, data collection costs are

high, or the sample size required for adequate power is high.

These issues make it difficult to implement long-term RCTs

and find evidence on the long-term effects of interventions,

particularly because they are more likely to suffer from attrition.
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19: See, for example, ExP platform

at Microsoft and the WebLab plat-

form at Amazon.

20: "for his contributions to be-

havioural economics." Source: No-

belPrize.org

21: "for their experimental

approach to alleviating global

poverty." Source: NobelPrize.org

It may also be politically infeasible for policymakers to enforce

randomization of receipt of a desirable treatment.

Even in the best case, where an RCT is successfully implemented

and we are confident in our retrieved average treatment effect,

it may be difficult to generalize (or extrapolate) the result of an

RCT in a specific context to a general finding. This difficulty

might be because local conditions or implementation capacity

materially differ between where interventions are staged or

because the scale of the intervention is important.

Notebooks

▶ Vaccination RCT R Notebook and Vaccination RCT Python

Notebook contain the analysis of vaccination examples.

▶ Covariates in RCT R Notebook and Covariates in RCT

Python Notebook explore the use of covariates to improve

precision and learn about heterogeneity via a simulation

experiment.

▶ Reemployment Bonus RCT R Notebook and Reemploy-

ment Bonus RCT Python Notebook explore the use of

covariates to improve precision and learn about hetero-

geneity in a Reemployment Bonus RCT.

Notes

RCTs have a profound influence on business, economics and

science more generally. For example, RCTs are routinely used

to study the efficacy of drugs and efficacy of various programs

in labor and development economics, among other subfields

of economics. The FDA moved to RCTs as the gold standard of

proving that treatments work in 1970s-80s. In the tech industry

and marketing, RCTs are also called "A/B Tests" and are now

widely used. Many major tech companies have their own ex-

perimental platforms to carry out thousands of experiments.
19

The expansion of the use of experimentation in economics is

associated with the work of Richard Thaler, the recipient of

the 2017 Alfred Nobel Memorial Prize in Economics;
20

Abhĳit

Banerjee, Esther Duflo, and Michael Kremer, the recipients of

the 2019 Alfred Nobel Memorial Prize in Economics;
21

and

John List, among many others.

https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/
https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/
https://www.amazon.jobs/en/teams/aeo
https://www.amazon.jobs/en/teams/aeo
https://www.nobelprize.org/prizes/economic-sciences/2017/thaler/facts/
https://www.nobelprize.org/prizes/economic-sciences/2017/thaler/facts/
https://www.nobelprize.org/prizes/economic-sciences/2019/summary/
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-sim-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-sim-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-sim-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
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We touched upon very basic ideas here. The basic random

design is just one of many possible randomized designs that

allow us to uncover causal effects. For an in-depth analysis of

design of experiments, please see lecture notes by Art Owen

([21]). For standard RCTs and causal analysis more generally,

see the book by Imbens and Rubin [10]. Duflo et al. [22] is

another good overview of the use of RCTs with a focus on

development economics applications. For real examples of how

RCTs are done and designed in practice, see, for example, the

FDA registry of RCTs, the American Economic Association for a

registry of RCTs in economics, or the The Poverty Action Lab.

Study Questions

1. Set-up a simulation experiment that illustrates the con-

trived smoking example, following the analytical example

we’ve presented in the text. Illustrate the difference be-

tween estimates obtained via an RCT (smoking generated

independently of potential outcomes) and an observa-

tional study (smoking choice is correlated with potential

outcomes).

2. Sketch out the proof of the large sample properties of the

two means estimator.

3. Study the notebook on vaccinations RCTs. Try to replicate

the results in the FDA briefing table for each age 18-64

(exact replication is not required). Explain your calcula-

tions.

4. Study the notebook on the reemployment example. Exper-

iment with putting even more flexible controls (e.g. use

extra interactions of some controls). Report your findings.

5. Work and experiment with the Covariates in RCT note-

book. Explain the main points being made.

6. Skim over the information on the Pfizer RCT design brief-

ing. Write down one paragraph summarizing the study

design.

7. Skim over one of the RCTs registered with AEA RCT

Registry. Write down one paragraph summarizing the

study design.

https://www.povertyactionlab.org/
https://www.fda.gov/media/144245/download
https://www.fda.gov/media/144245/download
https://www.socialscienceregistry.org/
https://www.socialscienceregistry.org/
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22: Why? Hint: Use the law of iter-

ated expectations.

8. Think of some RCTs where stability (SUTVA) is likely to

hold and some RCTs where it likely does not.

9. Explain why we can’t learn individual treatment effects

by first putting a unit in treatment and then putting the

individual in control second (or the other way around). A

hint is to think of all sources of randomness represented

by 𝜔. Would the situation be different if you had a time

machine?

2.A Approximate Distribution of the

Two Sample Means

To demonstrate the result in the text, we note that

�̂𝑑 − �𝑑 =
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

𝔼𝑛[1(𝐷 = 𝑑)]

for 𝑑 ∈ {0, 1} because we can re-write the population group

average as

�𝑑 = E[𝑌(𝑑)] = E[𝑌(𝑑)]𝔼𝑛[1(𝐷 = 𝑑)]
𝔼𝑛[1(𝐷 = 𝑑)] .

Hence, for each 𝑑 ∈ {0, 1},

√
𝑛(�̂𝑑 − �𝑑) =

√
𝑛
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

𝔼𝑛[1(𝐷 = 𝑑)] .

By the law of large numbers, 𝔼𝑛[1(𝐷 = 𝑑)] ≈ P(𝐷 = 𝑑); so we

have the approximation

√
𝑛{�̂𝑑 − �𝑑}𝑑∈{0,1} ≈

√
𝑛
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

P(𝐷 = 𝑑) .

Note that the terms being averaged are

(𝑌𝑖(𝑑) − E[𝑌(𝑑)])1(𝐷𝑖 = 𝑑)
P(𝐷 = 𝑑) .

These terms have zero mean
22

and variance

E[(𝑌(𝑑) − E[𝑌(𝑑)])21(𝐷 = 𝑑)2]
P(𝐷 = 𝑑)2 =

Var(𝑌 | 1(𝐷 = 𝑑) = 1)
P(𝐷 = 𝑑) .
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23: Derive that �̃� = 𝐷−E[𝐷] from

Assumption 2.2.1.

Also note the zero covariance:

E

[
(𝑌(1) − E[𝑌(1)])1(𝐷 = 1)

P(𝐷 = 1)
(𝑌(0) − E[𝑌(0)])1(𝐷 = 0)

P(𝐷 = 0)

]
= 0.

The application of the central limit theorem then yields the

claimed result.

2.B Statistical Properties of the Classical

Additive Approach
★

Here we analyze statistical inference on ATE using OLS and

adjusting for 𝑋 = (1,𝑊), without making the linearity assump-

tions we made in Section 2.2.

We consider the linear projection equation in the population:

𝑌 = 𝐷𝛼 + 𝑋′𝛽 + 𝜖, 𝜖 ⊥ (𝐷, 𝑋).

Here, we have that 𝐷 and 𝑋 = (1,𝑊) with E[𝑊] = 0, so that

𝛽′𝑋 = 𝛽1 + 𝛽′
2
𝑊 . Moreover, we have that 𝐷 ⊥ 𝑊 in the RCT

setting.

First, we’d like to verify that 𝛼 = E[𝑌(1)] − E[𝑌(0)] and 𝛽1 =

E[𝑌(0)]. For𝑈 := 𝛽′
2
𝑊 + 𝜖, we can write

𝑌 = 𝐷𝛼 + 𝛽1 +𝑈, 𝑈 ⊥ (1, 𝐷).

𝑈 ⊥ (1, 𝐷) holds because (1, 𝐷) ⊥ (𝑊, 𝜖) using that E[𝑊] = 0

and that 𝐷 ⊥ (𝑊, 𝜖). Therefore, 𝐷𝛼 + 𝛽1 coincides with the

population projection of 𝑌 onto (1, 𝐷). Hence, the projection

coefficients are the same as those obtained by the 2-sample

approach in the population. Therefore, 𝛽1 = E[𝑌(0)] and 𝛼 =

E[𝑌(1)] − E[𝑌(0)].

Second, we’d like to explain the details of the approximate

normality for the estimators of sample OLS coefficients �̂�1. The

OLS theory of the first chapter implies that the OLS estimator

�̂� obeys

√
𝑛(�̂� − 𝛼) ≈

√
𝑛
𝔼𝑛[𝜖�̃�]
𝔼𝑛[�̃�2]

a∼ 𝑁(0, V11),

where �̃� = 𝐷−E[𝐷] is the residual after partialling out 𝑋 from

𝐷 linearly,
23

and

V11 =
E[𝜖2�̃�2]
(E[�̃�2])2

.
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24: To explain the derivation, note

that by partialling out 𝐷 and 𝑊

(recall that 𝑋 = (1,𝑊)) from 1 and

𝑌, we obtain

�̃� = 𝛽11̃ + 𝜖; 1̃ := (1 − 𝐷).

The projection of 1 on 𝐷 and𝑊 is

given by 𝐷 since 𝐷 is binary and

we’ve assumed E[𝑊] = 0.

Applying the same theory for 𝛽1 (the intercept coefficient),

yields
24

√
𝑛(�̂�1 − 𝛽1) ≈

√
𝑛
𝔼𝑛[𝜖1̃]
𝔼𝑛[1̃2]

a∼ 𝑁(0, V22),

where 1̃ := (1 −𝐷) is the residual after partialling out 𝐷 and 𝑋

from 1 and

V22 =
E[𝜖2

1̃
2]

(E[1̃2])2
.

We can also establish that the estimators are jointly approxi-

mately normal with covariance

V12 =
E[𝜖2�̃�1̃]

E[1̃2]E[�̃�2]
.

2.C Statistical Properties of the

Interactive Regression Approach
★

Here we analyze the estimation of the ATE using OLS and

adjusting for (𝑊, 𝐷𝑊)without making any linearity assump-

tions on the potential outcomes as we did in Section 2.2. We

essentially show that the interactive model can be viewed as

estimating the BLP of each of the two potential outcomes 𝑌(0)
and 𝑌(1). Using this fact one can then easily argue that the

variance of the OLS estimate of the effect using the interactive

model can only be lower than the variance of the unadjusted

OLS estimate.

Letting 𝑋 = (1,𝑊) be an intercept and the pre-treatment

covariates 𝑊 , let us write the BLP of each of 𝑌(0) and 𝑌(1)
using 𝑋 as

𝑌(𝑑) = 𝛽′𝑑𝑋 + �𝑑 , �𝑑 ⊥ 𝑋, 𝑑 = 0, 1. (2.C.1)

Under Assumption 2.2.1, (2.C.1) coincides with the BLP of 𝑌

using 𝑋 in the 𝐷 = 𝑑 population. Letting � = 𝐷�1 + (1 − 𝐷)�0,

we thus have

𝑌 = 𝛽′𝑑𝑋 + �, E[�𝑋 | 𝐷 = 𝑑] = 0, 𝑑 = 0, 1. (2.C.2)

The BLPs in each of the two populations, 𝐷 = 0 and 𝐷 = 1, can

be combined across the populations to state the BLP of 𝑌 using

(𝑋, 𝐷𝑋)marginally:

𝑌 = 𝛽′
0
𝑋 + 𝛽′𝛿𝑋𝐷 + �, � ⊥ (𝑋, 𝐷𝑋), (2.C.3)
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25: Note that (2.C.1) and (2.C.2) im-

ply E[�𝐷𝑋] = 0 and E[�𝑋] = 0

and thus that � ⊥ (𝑋, 𝐷𝑋).

26: The derivation follows iden-

tical steps as that in Section 2.B

with the only exception that when

defining �̃� we need to partial

out (1,𝑊, 𝐷𝑊) from 𝐷 and when

defining 1̃ we need to partial

out (𝐷,𝑊, 𝐷𝑊) from 1. However,

since E[𝑊] = E[𝐷𝑊] = 0, the two

residuals take the same form of

𝐷 − E[𝐷] and 1 − 𝐷 correspond-

ingly.

where 𝛽𝛿 = 𝛽1 − 𝛽0.
25

Such a linear rule is called interactive
because it includes the interaction (meaning, product) of 𝐷 and

𝑊 as a regressor, in addition to 𝐷 and𝑊 .

We assume that covariates are centered:

E[𝑊] = 0.

Since 𝑋 contains an intercept, �𝑑 ⊥ 𝑋 implies E[�𝑑] = 0. To-

gether with centered covariates, we find that

E[𝑌(𝑑)] = E[𝛽′𝑑𝑋 + �𝑑] = 𝛽𝑑,1.

This means that the ATE coincides with the coefficient on 𝐷 in

the BLP of 𝑌 using (𝑋, 𝐷𝑋). That is, 𝛽𝛿,1 = 𝛿.

We are often interested in the ATE and Relative ATE

𝛿 and 𝛿/E[𝑌(0)].

If we use OLS to estimate the BLP of 𝑌 using (𝑋, 𝐷𝑋), then an

application of the OLS theory in the previous chapter gives us

that, under regularity conditions,( √
𝑛(�̂�𝛿,1 − 𝛿)√

𝑛(�̂�0,1 − E[𝑌(0)])

)
a∼ 𝑁(0, V),

where covariance matrix V has components:

V11 =
E[𝜖2�̃�2]
(E[�̃�2])2

, V22 =
E[𝜖2

1̃
2]

(E[1̃2])2
, V12 = V21 =

E[𝜖2�̃�1̃]
E[1̃2]E[�̃�2]

,

where �̃� = 𝐷−E[𝐷] is the residual after partialling out linearly

(1,𝑊, 𝐷𝑊) from 𝐷 and 1̃ := (1 − 𝐷) is the residual after

partialling out (𝐷,𝑊, 𝐷𝑊) from 1.
26

We can then obtain the approximate normality for the Relative

ATE using the delta method:

√
𝑛(�̂�𝛿,1/�̂�0,1 − 𝛿/E[𝑌(0)]) a∼ 𝑁(0, 𝐺′V𝐺),

where

𝐺 = [1/E[𝑌(0)],−𝛿/(E[𝑌(0)])2]′.

We can rewrite (2.C.3) as

𝑌 = 𝛽0,1 + 𝐷𝛽𝛿,1 +𝑈, 𝑈 = 𝛽′
0,2𝑊 + 𝛽′𝛿,2𝑊𝐷 + �.

From � ⊥ (𝑋, 𝐷, 𝐷𝑋), E[𝑊] = 0, and Assumption 2.2.1, we

obtain that 𝑈 ⊥ (1, 𝐷), meaning that 𝛽0,1 + 𝐷𝛽𝛿,1 is the BLP
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27: Verify this as a reading exer-

cise.

of 𝑌 using (1, 𝐷). We can therefore estimate the ATE as the

coefficient on𝐷 either in the OLS of𝑌 on (1, 𝐷) or in the OLS of𝑌

on (𝑋, 𝐷𝑋). The former exactly coincides with the unadjusted

estimator �̂� from Section 2.1, which obeys

√
𝑛(�̂� − 𝛿) a∼ 𝑁(0, V̄11), V̄11 =

E[𝑈2�̃�2]
(E[�̃�2])2

.

Since 𝜖 satisfies the BLP conditions for each of the treatment

populations, i.e. E[�𝑊 | 𝐷 = 𝑑] = 0, it then follows that

V11 ≤ V̄11.

Moreover, the inequality is strict if Var(𝛽′
0,2
𝑊) > 0 or Var(𝛽′

1,2
𝑊) >

0.
27

That is, pre-determined covariates improve the precision

of estimating the ATE 𝛿, when using the interactive model,

without any linearity assumptions on the CEF.



Bibliography

[1] Jan Baptist van Helmont. Oriatrike, Or, Physick Refined, the
Common Errors Therein Refuted, and the Whole Art Reformed
and Rectified. Loyd, London, 1662 (cited on page 41).

[2] Donald B. Rubin. ‘Estimating causal effects of treatments

in randomized and nonrandomized studies.’ In: Journal
of Educational Psychology 66.5 (1974), pp. 688–701 (cited

on page 42).

[3] P. Holland. ‘Causal Inference, Path Analysis, and Re-

cursive Structural Equations Models’. In: Sociological
Methodology. Washington, DC: American Sociological

Association, 1986, pp. 449–493 (cited on page 42).

[4] Peng Ding and Fan Li. ‘Causal Inference: A Missing Data

Perspective’. In: Statistical Science 33.2 (2018), pp. 214 –237.

doi: 10.1214/18-STS645 (cited on page 42).

[5] Tyler J. VanderWeele, Guanglei Hong, Stephanie M. Jones,

and Joshua L. Brown. ‘Mediation and Spillover Effects

in Group-Randomized Trials: A Case Study of the 4Rs

Educational Intervention’. In: Journal of the American Sta-
tistical Association 108.502 (2013), pp. 469–482. (Visited

on 02/17/2024) (cited on page 43).

[6] Peter M. Aronow and Cyrus Samii. ‘Estimating average

causal effects under general interference, with application

to a social network experiment’. In: The Annals of Applied
Statistics 11.4 (2017), pp. 1912 –1947. doi: 10.1214/16-

AOAS1005 (cited on page 43).

[7] Michael P. Leung. ‘Treatment and Spillover Effects Under

Network Interference’. In: The Review of Economics and
Statistics 102.2 (2020), pp. 368–380 (cited on page 43).

[8] Francis J. DiTraglia, Camilo García-Jimeno, Rossa O’Keeffe-

O’Donovan, and Alejandro Sánchez-Becerra. ‘Identify-

ing causal effects in experiments with spillovers and

non-compliance’. In: Journal of Econometrics 235.2 (2023),

pp. 1589–1624. doi: https://doi.org/10.1016/j.

jeconom.2023.01.008 (cited on page 43).

[9] Gonzalo Vazquez-Bare. ‘Identification and estimation of

spillover effects in randomized experiments’. In: Journal
of Econometrics 237.1 (2023), p. 105237. doi: https://

doi.org/10.1016/j.jeconom.2021.10.014 (cited on

page 43).

https://doi.org/10.1214/18-STS645
https://doi.org/10.1214/16-AOAS1005
https://doi.org/10.1214/16-AOAS1005
https://doi.org/https://doi.org/10.1016/j.jeconom.2023.01.008
https://doi.org/https://doi.org/10.1016/j.jeconom.2023.01.008
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.10.014
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.10.014


Bibliography 68

[10] Guido W. Imbens and Donald B. Rubin. Causal Inference
in Statistics, Social, and Biomedical Sciences. Cambridge

University Press, 2015 (cited on pages 43, 61).

[11] Walter A Orenstein, Roger H Bernier, Timothy J Dondero,

Alan R Hinman, James S Marks, Kenneth J Bart, and

Barry Sirotkin. Field evaluation of vaccine efficacy / Walter A.
Orenstein ... [et al.] 1984 (cited on page 49).

[12] Jerome Cornfield. ‘A statistical problem arising from

retrospective studies’. In: Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability. Vol. 4.

University of California Press Berkeley, CA. 1956, pp. 135–

148 (cited on page 50).

[13] Winston Lin. ‘Agnostic notes on regression adjustments

to experimental data: Reexamining Freedman’s critique’.

In: Annals of Applied Statistics 7.1 (2013), pp. 295–318 (cited

on page 56).

[14] Yannis Bilias. ‘Sequential testing of duration data: The

case of the Pennsylvania ‘reemployment bonus’ exper-

iment’. In: Journal of Applied Econometrics 15.6 (2000),

pp. 575–594 (cited on page 56).

[15] Philip G. Wright. The Tariff on Animal and Vegetable Oils.
New York: The Macmillan company, 1928 (cited on page 57).

[16] Sewall Wright. ‘Correlation and Causation’. In: Journal of
Agricultural Research 20.7 (Jan. 1921), pp. 557–585 (cited

on page 57).

[17] Judea Pearl. ‘Causal diagrams for empirical research’. In:

Biometrika 82.4 (1995), pp. 669–688 (cited on page 57).

[18] Sander Greenland, Judea Pearl, and James M. Robins.

‘Causal diagrams for epidemiologic research’. In: Epidemi-
ology 10.1 (1999), pp. 37–48 (cited on page 57).

[19] David R. Cox. Planning of experiments. Wiley, 1958 (cited

on page 58).

[20] The Belmont report: Ethical principles and guidelines for
the protection of human subjects of research. Tech. rep. Na-

tional Commission for the Protection of Human Subjects

of Biomedical and Behavioral Research, 1978 (cited on

page 59).

[21] Art Owen. ‘A First Course in Experimental Design: Notes

from Stat 263/363’. Lecture notes. Accessed 1/17/2024.

2020 (cited on page 61).

[22] Esther Duflo, Rachel Glennerster, and Michael Kremer.

‘Using randomization in development economics re-

search: A toolkit’. In: Handbook of Development Economics
4 (2007), pp. 3895–3962 (cited on page 61).

https://artowen.su.domains/courses/363/doenotes.pdf
https://artowen.su.domains/courses/363/doenotes.pdf

