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"you are smarter than your data. Data do not un-

derstand causes and effects; humans do."

– Judea Pearl [1].

Here we explore a fully nonlinear, nonparametric formulation

of causal diagrams and associated structural equation mod-

els. These provide a useful tool for thinking about structures

underlying causal identification.
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1: We abstract away from rank-type

conditions. See Remark 6.2.1.

2: Fix interventions also had ap-

peared as part of do calculus in

Pearl [2].

7.1 Introduction

In 2011, J. Pearl was awarded the

A.M. Turing award, the highest

award in the field of Computer Sci-

ence and Artificial Intelligence: "For

fundamental contributions to artifi-

cial intelligence through the devel-

opment of a calculus for probabilis-

tic and causal reasoning." In the

Biometrika 1995 article [2], J. Pearl

presents his work as a generaliza-

tion of the SEMs put forward by

T.Haavelmo [3] in 1944 and others.

The purpose of this module is to provide a more formal and

general treatment of acyclic nonlinear (and nonparametric)

structural equation models (SEMs) and corresponding causal

directed acyclic graphs (DAGs). We discuss the concepts and

identification results provided by Judea Pearl and his collabora-

tors and by James M. Robins and his collaborators.

These models and concepts allow us to rigorously define struc-

tural causal effects in fully nonlinear models and obtain condi-

tional independence relationships that can be used as inputs to

establishing nonparametric identification from the structure of

the causal DAGs alone.
1

Structural causal effects are defined

as hypothetical effects of interventions in systems of equations.

We discuss identification of effects of do interventions introduced

by Pearl [2] and fix interventions introduced by Heckman and

Pinto [4] and Robins and Richardson [5].
2

fix interventions

induce counterfactual DAGs called SWIGs (Single World Inter-

vention Graphs) and can recover the causal graphs we’ve seen

in previous chapters.

Whether causal effects derived from SEMs approximate policy

or treatment effects in the real world depends to a large extent

on the degree to which the posited SEM approximates real

phenomena. In thinking about the approximation quality of a

model, it is important to keep in mind that we will never be able

to establish that a model is fully correct using statistical criteria.

However, we may be able to reject a given model using formal

falsifiability criteria – though not all models are statistically

falsifiable – or contextual knowledge. Further, evidence for

some causal effects inferred from SEMs can be provided by

further use of explicit randomized controlled trials, though the

use of experiments is not an option in many cases. Ultimately,

contextual knowledge is often crucial for making the case that a

given structural model represents real phenomena sufficiently

well to produce credible estimates of causal effects when using

observational data.

Notation

Consider a pair of random variables (or equivalently, random

vectors) 𝑈 and 𝑉 with joint distribution probability (mass)

function p𝑈𝑉(𝑢, 𝑣) at generic evaluation points (𝑢, 𝑣). We will

simply denote p𝑈𝑉(𝑢, 𝑣) by p(𝑢, 𝑣) whenever there is no ambi-

guity. We will denote the marginal probability (mass) functions

https://en.wikipedia.org/wiki/Judea_Pearl
https://en.wikipedia.org/wiki/James_Robins
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by p𝑈(𝑢) and p𝑉(𝑣), or simply by p(𝑢) and p(𝑣). The random

variables𝑈 and 𝑉 are independent, which we denote as

𝑈 ⊥⊥ 𝑉,

if and only if the joint probability density (or mass) function

p(𝑢, 𝑣) can be factorized as

p(𝑢, 𝑣) = p(𝑢) p(𝑣)

or equivalently if and only if

E[𝑔(𝑈)ℓ (𝑉)] = E[𝑔(𝑈)]E[ℓ (𝑉)]

for any bounded functions 𝑔 and ℓ . This definition of indepen-

dence implies the ignorability or exclusion results,

p(𝑢 | 𝑣) = p(𝑢), p(𝑣 | 𝑢) = p(𝑣),

which follow from Bayes’ law:

p(𝑢 | 𝑣) = p(𝑢) p(𝑣)
p(𝑣) .

Conditional independence is defined similarly by replacing

distributions and expectations with their conditional analogs.

Appendix 7.B reviews some useful results on conditional inde-

pendence.

7.2 From Causal Diagrams to Causal

DAGs: TSEM Example

Formal causal nonlinear DAGs generalize linear parametric

models to general nonparametric forms. Recall our previous

discussion of a model for a household’s log-demand for gaso-

line (Y), which is a function of log-price (p) and household

characteristics (X). We can generalize the simple TSEM to a

nonlinear DAG as follows.

Example 7.2.1 (TSEM) We have a system of triangular struc-

tural equations:

𝑌 := 𝑓𝑌(𝑃, 𝑋, 𝜖𝑌),
𝑃 := 𝑓𝑃(𝑋, 𝜖𝑃),
𝑋 := 𝜖𝑋 ,

(7.2.1)
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𝑃𝜖𝑃

𝑋

𝑌 𝜖𝑌

𝜖𝑋

Figure 7.1: The causal DAG equiva-

lent to the TSEM in Example 7.2.1.

𝑃

𝑋

𝑌

Figure 7.2: The causal DAG corre-

sponding to the TSEM in Example

7.2.1 with latent root nodes erased.

where 𝑓 ’s are said to be deterministic structural functions and

𝜖𝑌 , 𝜖𝑃 , 𝜖𝑋 are structural shocks that are independent of each

other. The dimension of structural shocks is not restricted.

Also, note the independences:

𝜖𝑌 ⊥⊥ (𝑃, 𝑋), 𝜖𝑃 ⊥⊥ 𝑋.

A causal diagram depicting the algebraic relationship defining

the TSEM in Example 7.2.1 is shown in Figure 7.1. The absence

of edges between nodes encodes the model’s independence

restrictions. Thus, as before, we can see that we can view

graphs as representations of independence relations in statistical

models. The graph visually depicts independence restrictions

and the propagation of information or structural shocks from

root nodes to their children, grandchildren, and so forth.

It is also common to draw graphs based on only observed

variables. We can erase the latent root nodes from Figure 7.1 to

produce the equivalent diagram illustrated in Figure 7.2.

The TSEM is purely a statistical model. We can view this model

as structural under invariance restriction, following Haavelmo

[3].

Definition 7.2.1 (Structural Form) When we say that the TSEM
is structural, we mean that it is defined by a structure made up of a
set of stochastic processes:

𝑌(𝑝, 𝑥) := 𝑓𝑌(𝑝, 𝑥, 𝜖𝑌),
𝑃(𝑥) := 𝑓𝑃(𝑥, 𝜖𝑃),
𝑋 := 𝜖𝑋 ,

indexed by (𝑝, 𝑥) ∈ P×X, called structural functions or structural
potential outcome processes. Moreover,

▶ (Exogeneity) Stochastic shocks 𝜖𝑃 , 𝜖𝑋 , and 𝜖𝑌 are generated
as independent variables outside of the model;

▶ (Consistency) The endogenous variables are generated by
recursive substituations:

𝑌 := 𝑌(𝑃, 𝑋), 𝑃 := 𝑃(𝑋), 𝑋 := 𝜖𝑋 ;

▶ (Invariance) The structure remains invariant to changes of
the distribution of stochastic shocks 𝜖.

The structure will be assumed to be preserved under various
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𝑃(𝑥)𝜖𝑃

𝑥

𝑌(𝑥)

Figure 7.3: The graph produced

from Figure 7.1 by conditioning on

𝑋 = 𝑥. Here 𝑋 is a parent to both

𝑃 and 𝑌. After conditioning, the

remaining source of variation in

𝑃(𝑥) is 𝜖𝑃 . 𝜖𝑃 is determined exoge-

nously – as if by an experiment –

which allows measurement of the

causal effect 𝑃(𝑥) → 𝑌.

interventions as defined below.

While SEMs are statistical models, assumptions akin to those in

Definition 7.2.1 endow them with a structural meaning. Struc-

tural meaning may be generated by economic or other scientific

reasoning. For example, structural functions may correspond

to demand functions, supply functions, and expenditure func-

tions, with these notions going back at least to Marshall [6] in

the 19
th

century.

Remark 7.2.1 (Link to Potential Outcomes) Consider binary

𝑝 ∈ {0, 1} for simplicity. Consider potential outcomes, given

by the structure:

𝑌(𝑝, 𝑋) := 𝑔(𝑝, 𝑋, 𝜖𝑌(𝑝)).

We can view potential outcomes through a SEM framework

as follows. Let 𝜖𝑌 := {𝜖𝑌(𝑝) : 𝑝 ∈ {0, 1}}, then we have that

𝑌(𝑝, 𝑋) = 𝑔(𝑝, 𝑋, 𝜖𝑌(𝑝)) = 𝑓𝑌(𝑝, 𝑋, 𝜖𝑌),

for

𝑓𝑌(𝑝, 𝑥, 𝑒) := 1(𝑝 = 0)𝑔(𝑝, 𝑥, 𝑒(0)) + 1(𝑝 = 1)𝑔(𝑝, 𝑥, 𝑒(1))

for the argument 𝑒 = {𝑒(𝑝) : 𝑝 ∈ {0, 1}}. This example

emphasizes that the dimensionality of 𝜖’s is not restricted in

the general framework.

Identification by Regression

By conditioning on 𝑋 = 𝑥 in the graph in Figure 7.1, we obtain

the graph shown in Figure 7.3. We can equivalently express the

relationship shown in Figure 7.3 in terms of equations as

𝑌(𝑥) = 𝑓𝑌(𝑃(𝑥), 𝑥, 𝜖𝑌), 𝜖𝑌 ⊥⊥ 𝑃(𝑥).

If 𝑃(𝑥) is non-degenerate, we can further condition on 𝑃(𝑥) = 𝑝

to learn the average structural function

E[ 𝑓𝑌(𝑝, 𝑥, 𝜖𝑌)]

via regressions. We formally record this result as follows.



7 Causal Inference via Directed Acyclical Graphs and Nonlinear
Structural Equation Models 174

In the TSEM, the conditional average structural function

E[ 𝑓𝑌(𝑝, 𝑥, 𝜖𝑌)]

can be identified by conditioning on 𝑃 and 𝑋:

E[𝑌 |𝑃 = 𝑝, 𝑋 = 𝑥]
= E[ 𝑓𝑌(𝑃, 𝑋, 𝜖𝑌)|𝑃 = 𝑝, 𝑋 = 𝑥]
= E[ 𝑓𝑌(𝑝, 𝑥, 𝜖𝑌)|𝑃 = 𝑝, 𝑋 = 𝑥]
= E[ 𝑓𝑌(𝑝, 𝑥, 𝜖𝑌)]

provided the event {𝑃 = 𝑝, 𝑋 = 𝑥} is assigned positive

density.

This average structural function has the interpretation as the

expected outcome when 𝑃 and 𝑋 are exogenously set (set

outside of the model as if by a policy maker or experiment)

to 𝑃 = 𝑝 and 𝑋 = 𝑥.

Hence, we can use the average structural function to provide

counterfactual predictions – predictions for the outcome

under exogenous assignment of the policy variable 𝑃 at

fixed values for 𝑋. Within the TSEM, these counterfactual

predictions align with the usual prediction rule E[𝑌 |𝑃 =

𝑝, 𝑋 = 𝑥].

If the confounder 𝑋 is not observed, the causal relationship

𝑃(𝑥) → 𝑌 is not identified.

If we can identify the conditional average structural function,

we can also identify the conditional average structural causal

effect:

E[ 𝑓𝑌(𝑝1,𝑥, 𝜖𝑌)] − E[ 𝑓𝑌(𝑝0, 𝑥, 𝜖𝑌)]
= E[𝑌 |𝑃 = 𝑝1, 𝑋 = 𝑥] − E[𝑌 |𝑃 = 𝑝0, 𝑋 = 𝑥].

(7.2.2)

The right hand side of (7.2.2) is a statistical quantity that can

clearly be learned from data on 𝑌, 𝑃, and 𝑋 under reasonable

assumptions. The left hand side of (7.2.2) defines a structural

quantity of interest: the average effect of exogenously changing

𝑃 from 𝑝0 to 𝑝1 at 𝑋 = 𝑥.
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𝑝

𝑋

𝑌(𝑝)

Figure 7.4: Causal DAG describing

the counterfactual SEM induced by

doing 𝑃 = 𝑝.

3: The ideas of constructing coun-

terfactuals go back at least to P.

Wright’s work in 1928 [7], which

involved replacing one structural

equation with a different equation

to define a counterfactual SEM.

Specifically, Wright replaced the

supply equation with another one

reflecting a multiplicative tariff on

the price that producers receive.

This intervention is a (multiplica-

tive) soft intervention. Building on

P. Wright’s work, soft interventions

have been widely used in empiri-

cal economics (e.g., decomposition

analysis of wages to study discrim-

ination, carbon and emission taxes

in environmental economics and

industrial organization). See also

[8, 9] for recent theoretical research

in the computer science literature,

framed in terms of DAGs and non-

linear ASEMs.

4: The fix intervention was intro-

duced in Heckman and Pinto [4],

as an extension of the do opera-

tion, and SWIGs were developed

by Richardson and Robins [5].

𝑝

𝑋

𝑌(𝑝)𝑃

Figure 7.5: Causal DAG describing

the counterfactual SEM induced by

setting 𝑃 = 𝑝 in the 𝑌 equation in

(7.2.1) (formally a SWIG).

Interventions

Do Interventions. The do operation 𝑑𝑜(𝑃 = 𝑝) or do inter-

vention corresponds to creating the counterfactual graph

shown in Figure 7.4. On the graph, we remove 𝑃 and re-

place it with a deterministic node 𝑝. In terms of equations

(7.2.1) defining the TSEM, we replace the equation for 𝑃

with 𝑝 and then set 𝑃 equal to 𝑝 in the first equation. The

corresponding counterfactual SEM is

©­«

𝑌

𝑃

𝑋

 : do(𝑃 = 𝑝)ª®¬ :=


𝑓𝑌(𝑝, 𝑋, 𝜖𝑌)
𝑝

𝑋

 =


𝑌(𝑝)
𝑝

𝑋

 .

The variables 𝑌(𝑝) and 𝑋 are the counterfactuals generated by

the intervention 𝑑𝑜(𝑃 = 𝑝). Note that the intervention keeps 𝑋

and stochastic shocks 𝜖𝑌 invariant.

The do operation has been extended to generate other types

counterfactuals. For instance, another class of interventions are

soft interventions
3

where the intervening variable is set to a

value that is a function of its natural value (e.g., increasing a

price by 10%). We could represent such interventions by the

modified counterfactual SEM:

©­«

𝑌

𝑃

𝑋

 : soft𝑌(𝑃, 𝛼)ª®¬ :=


𝑓𝑌(𝛼(𝑃), 𝑋, 𝜖𝑌)
𝑓𝑃(𝑋, 𝜖𝑃)
𝑋

 =


𝑌(𝛼(𝑃))
𝑃

𝑋

 .
As an additional general example, we now consider fix interven-
tions that induce single-world intervention graphs (SWIGs).

4

Fix Interventions and SWIGs. Instead of removing 𝑃 from

the graph in Figure 7.2, we can split it into two nodes – 𝑃

and a deterministic node 𝑝 – where all the outgoing arrows

from 𝑃 are removed. The fixed node 𝑝 then inherits the

outgoing arrows from the original 𝑃.

The corresponding counterfactual SEM is

©­«

𝑌

𝑃

𝑋

 : fix𝑌(𝑃 = 𝑝)ª®¬ :=


𝑓𝑌(𝑝, 𝑋, 𝜖𝑌)
𝑃

𝑋

 =


𝑌(𝑝)
𝑃

𝑋

 .
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5: The same statement is formally

not true with the do operation

in place of the fix operation. Of

course, one can also define these

conditional counterfactuals by re-

verting to potential outcomes nota-

tion within causal DAGs; see [10].

The fix intervention merely says that we are setting 𝑃 = 𝑝 in

the 𝑌 equation. Figuratively speaking, it is a "localized do"

operation. The variables 𝑌(𝑝), 𝑃, and 𝑋 are the counterfactuals

generated by this intervention. The intervention does not affect

the 𝑃 and 𝑋 equations, nor does it affect 𝜖𝑌 in the𝑌 equation.

The SWIG allows us to immediately see that conditional exo-

geneity (ignorability) holds:

𝑌(𝑝) ⊥⊥ 𝑃 | 𝑋.

Therefore we can identify the counterfactual regression E[𝑌(𝑝) |
𝑋] by the "factual" regression E[𝑌 | 𝑃 = 𝑝, 𝑋],

E[𝑌(𝑝) | 𝑋] = E[𝑌(𝑝) | 𝑃 = 𝑝, 𝑋] = E[𝑌 | 𝑃 = 𝑝, 𝑋],

invoking conditional independence and consistency arguments.

The do and fix interventions generate the same counterfactual

distribution for (𝑌(𝑝), 𝑋), so the average causal effects of simple

interventions coincide in the two approaches. However, the fix

intervention creates a triple (𝑌(𝑝), 𝑋, 𝑃), which is useful for

answering more complicated counterfactual questions.

For example, the counterfactual prediction E[𝑌(0) | 𝑃 = 1]
tells us what trainees (𝑃 = 1) would have earned on average,

had they not gone through the training program (𝑝 = 0). In

treatment effect analysis, this quantity is crucial for defining

the average treatment effects for the treated:

E[𝑌(1) | 𝑃 = 1] − E[𝑌(0) | 𝑃 = 1].

Thus, the fix intervention allows us to seamlessly talk about

conditional on 𝑃 counterfactuals:
5

E

[
𝑌(𝑝) | 𝑃 = 𝑝̄

]
:= E

[
(𝑌 | 𝑃 = 𝑝̄) : fix𝑌(𝑃 = 𝑝)

]
.

7.3 General Acyclic SEMs and Causal

DAGs

We will now turn to generalizing the concepts of the previous

section from the TSEM case to general Directed Acyclic Graphs

(DAGs) and the corresponding acyclic structural equation mod-

els (ASEMs).
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𝑍 𝐷 𝑌

𝑋

Figure 7.6: LS-DAG Example

DAGs and Acyclic SEMs via Examples

We now give a sequence of formal definitions, which can be

easily understood by looking at just a single example.

Example 7.3.1 (Less Simple DAG (LS-DAG)) A directed acyclic

graph (DAG) is a collection of nodes and directed edges with

no cycles.

Consider the DAG in Figure 7.6: Here we can say that

▶ 𝑋 is a parent of its children 𝐷 and 𝑌;

▶ 𝐷 and 𝑌 are descendants of 𝑍;

▶ There is a directed path from 𝑍 to 𝑌;

▶ There are two paths from 𝑍 to 𝑋 , but no directed path;

▶ 𝐷 is a collider of the path 𝑍→ 𝐷 ← 𝑋;

▶ 𝐷 is a noncollider of the path 𝑍→ 𝐷 → 𝑌;

▶ 𝑌 ← 𝑋 → 𝐷 is a backdoor path from 𝑌 to 𝐷.

▶ There are no cycles (there is no directed path that

returns to the same node).

Example 7.3.2 (ASEM Corresponding to the LS-DAG) A

system of triangular structural equations corresponding to

Example 7.3.1 is

𝑌 := 𝑓𝑌(𝐷, 𝑋, 𝜖𝑌),
𝐷 := 𝑓𝐷(𝑍, 𝑋, 𝜖𝐷),
𝑋 := 𝜖𝑋 ,

𝑍 := 𝜖𝑍 ,

where 𝜖𝑌 , 𝜖𝑋 , 𝜖𝐷 , and 𝜖𝑍 are mutually independent.

Factual distributions in DAG models have a beautiful Markov

factorization structure, which allows for a simple representation

of the joint distribution of all variables.

Example 7.3.3 (Factual Law in LS-DAG) Noting the depen-

dences of each variable in the LS-DAG, we can write the joint

distribution (density) p of 𝑌, 𝐷, 𝑋, 𝑍 as

p(𝑦, 𝑑, 𝑥, 𝑧) = p(𝑦 |𝑑, 𝑥) p(𝑑 |𝑥, 𝑧) p(𝑥) p(𝑧).

Indeed,

p(𝑦, 𝑑, 𝑥, 𝑧) = p(𝑦 |𝑑, 𝑥, 𝑧) p(𝑑, 𝑥, 𝑧),

by Bayes’ law. Then p(𝑦 |𝑑, 𝑥, 𝑧) = p(𝑦 |𝑑, 𝑥) as the distribution
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6: The latter statement means that

there are no cycles.

of 𝑌 is independent of 𝑍, given its parents 𝐷 and 𝑋 . Further,

p(𝑑, 𝑥, 𝑧) = p(𝑑 |𝑥, 𝑧) p(𝑥, 𝑧), by Bayes’ law, and p(𝑥, 𝑧) =
p(𝑧) p(𝑥) by independence.

General DAGs

The purpose of the rest of this section is to give concise general

definitions.

A graph G is an ordered pair (𝑉, 𝐸), where 𝑉 = {1, ..., 𝐽}
is a collection of vertices/nodes and 𝐸 is a matrix of edges

𝑒𝑖 𝑗 ∈ {0, 1} – that is, 𝐸 = {𝑒𝑖 𝑗 : (𝑖 , 𝑗) ∈ 𝑉2}.

Given a collection of random variables𝑋 = (𝑋𝑗)𝑗∈𝑉 , we associate

each index 𝑗 with the name "𝑋𝑗" whenever convenient. If the

edge (𝑖 , 𝑗) is present, namely 𝑒𝑖 𝑗 = 1, we read it as

"𝑋𝑖 → 𝑋𝑗" or "𝑋𝑖 is an immediate cause of 𝑋𝑗 ."

Consider a strict partial order < on 𝑉 induced by 𝐸, where

𝑋𝑗 < 𝑋𝑘 (we read this as "𝑋𝑗 is determined before 𝑋𝑘") means

that either 𝑋𝑗 → 𝑋𝑘 or 𝑋𝑗 → 𝑋𝑣1
→ ...𝑋𝑣𝑚 → 𝑋𝑘 is true

for some 𝑣ℓ ’s in 𝑉 . A partial ordering of 𝑉 exists if for each

𝑗 the statement 𝑋𝑗 < 𝑋𝑗 is not true.
6

Note that we may

interchangeably use random variable names,𝑋ℓ , or their indices

,ℓ , when referring to nodes in the graph.

Definition 7.3.1 (DAG) The graph G = (𝑉, 𝐸) is a DAG if the
graph has no cycles, that is, if 𝑉 is partially ordered by the edge
structure 𝐸.

Example 7.3.4 (LS-DAG continued) In our example (Exam-

ple 7.3.1), we had vertices 𝑉 = {1, 2, 3, 4} identified with

𝑌, 𝐷, 𝑋, 𝑍, and the edge set

𝐸 =

©­­­«
0 0 0 0

1 0 0 0

1 1 0 0

0 1 0 0

ª®®®¬
The partial ordering is 𝑋 < 𝐷, 𝑋 < 𝑌, 𝑍 < 𝐷, 𝐷 < 𝑌.

Definition 7.3.2 (Parents, Ancestors, Descendants on a DAG)

The parents of𝑋𝑗 are the set 𝑃𝑎 𝑗 := {𝑋𝑘 : 𝑋𝑘 → 𝑋𝑗}. The children
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of 𝑋𝑗 are the set 𝐶ℎ 𝑗 := {𝑋𝑘 : 𝑋𝑗 → 𝑋𝑘}. The ancestors of 𝑋𝑗 are
the set 𝐴𝑛 𝑗 := {𝑋𝑘 : 𝑋𝑘 < 𝑋𝑗} ∪ {𝑋𝑗}. The descendants of 𝑋𝑗 are
the set 𝐷𝑠 𝑗 := {𝑋𝑘 : 𝑋𝑘 > 𝑋𝑗}.

Definition 7.3.3 (Paths and Backdoor Paths on DAGs) A
directed path is a sequence 𝑋𝑣1

→ 𝑋𝑣2
→ ...𝑋𝑣𝑚 . A non-directed

path is a path, where some arrows (but not all) arrows are replaced
by←. A collider node is a node 𝑋𝑗 such that→ 𝑋𝑗 ←. A backdoor
path from 𝑋𝑙 to 𝑋𝑘 is an undirected path that starts at 𝑋𝑙 and ends
with an incoming arrow→ 𝑋𝑘 .

From DAGs to ASEMs

Every causal DAG implicitly defines a nonparametric acyclic

structural equation model. Thus the two objects are simply

different representations or views of the same assumptions

on the data generating process and the stochastic potential or

counterfactual outcome processes. DAGs are simply a visual

depiction of ASEMs and ASEMs are simply a structural equation

based expression of DAGs.

Definition 7.3.4 (ASEM) The ASEM corresponding to the DAG
G = (𝑉, 𝐸) is the collection of random variables {𝑋𝑗} 𝑗∈𝑉 such that

𝑋𝑗 := 𝑓𝑗(𝑃𝑎 𝑗 , 𝜖 𝑗), 𝑗 ∈ 𝑉,

where the disturbances (𝜖 𝑗)𝑗∈𝑉 are jointly independent.

Definition 7.3.5 (Linear ASEM) The linear ASEM is an ASEM
where the equations are linear:

𝑓𝑗(𝑃𝑎 𝑗 , 𝜖 𝑗) := 𝑓 ′𝑗 𝑃𝑎 𝑗 + 𝜖 𝑗 ;

here we identify functions { 𝑓𝑗} with coefficient vectors { 𝑓𝑗}.

In linear ASEMs we may replace the requirement of indepen-

dent errors by the weaker requirement of uncorrelated errors.

Definition 7.3.6 (Structural/Potential Response Processes)

The structural potential response processes for the ASEM corre-
sponding to the DAG G = (𝑉, 𝐸) are given by the structure:

𝑋𝑗(𝑝𝑎 𝑗) := 𝑓𝑗(𝑝𝑎 𝑗 , 𝜖 𝑗), 𝑗 ∈ 𝑉,
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𝑍 𝑑 𝑌(𝑑)

𝑋

Figure 7.7: CF LS-DAG induced by

𝑑𝑜(𝐷 = 𝑑) intervention.

viewed as stochastic processes indexed by the potential parental
values 𝑝𝑎 𝑗 .

Definition 7.3.7 (Consistency) The observable variables are
generated by drawing {𝜖 𝑗} 𝑗∈𝑉 and then solving the system of
equations for {𝑋𝑗} 𝑗∈𝑉 .

The stochastic shocks {𝜖 𝑗} 𝑗∈𝑉 are called exogenous variables,

and the variables {𝑋𝑗} 𝑗∈𝑉 are called endogenous variables.

Endogenous variables are determined by the model equations,

while exogenous variables are not.

The joint distribution of variables in ASEMs is generally charac-

terized as follows:

Theorem 7.3.1 (Factual Law via Markovian Factorization) The
general ASEM model, given by (𝑋𝑗)𝑗∈𝑉 with an associated DAG
G(𝑉, 𝐸), obeys the following equivalent properties:

▶ Factorization: The law admits factorization:

p({𝑥ℓ }ℓ∈𝑉) =
∏
ℓ∈𝑉

p(𝑥ℓ | 𝑝𝑎ℓ ).

▶ Local Markov Property: All variables are independent of
their non-descendants given their parents.

Counterfactuals Induced by Interventions

We next discuss counterfactuals generated by interventions. We

first consider counterfactuals in the Less Simple DAG example

(Example 7.3.1). Note that we use the abbreviation "CF" to

denote "counterfactual."

Example 7.3.5 (CF-ASEM Induced by Do for LS-DAG Exam-

ple) Consider the ASEM from Example 7.3.1. A counterfactual

system induced by 𝑑𝑜(𝐷 = 𝑑) is

𝑌(𝑑) := 𝑓𝑌(𝑋, 𝑑, 𝜖𝑌),
𝑑,

𝑍 = 𝜖𝑍 ,

𝑋 = 𝜖𝑋 ,

where 𝜖𝑋 , 𝜖𝑍 , 𝜖𝑌 are mutually independent. The correspond-

ing graph, provided in Figure 7.7, is denoted by G(𝑑).
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𝑍

𝐷 𝑑 𝑌(𝑑)

𝑋

Figure 7.8: CF LS-DAG (SWIG) in-

duced by the 𝑓 𝑖𝑥𝑌(𝐷 = 𝑑) inter-

vention.

7: This sounds a bit painful.

Example 7.3.6 (CF-ASEM Induced by Fix for LSDAG Example)

Consider the ASEM from Example 7.3.1. A counterfactual

SEM induced by fix(𝐷 = 𝑑) takes the following form:

𝑌(𝑑) := 𝑓𝑌(𝑋, 𝑑, 𝜖𝑌),
𝑑,

𝐷 := 𝑓𝐷(𝑋, 𝑍, 𝜖𝐷),
𝑍 := 𝜖𝑍 ,

𝑋 := 𝜖𝑋 ,

where 𝜖𝑋 , 𝜖𝑍, 𝜖𝐷 , 𝜖𝑌 are mutually independent. The corre-

sponding graph, provided in Figure 7.8, is denoted by G̃(𝑑).

We now give a more general definition.

Definition 7.3.8 (Counterfactual ASEM induced by Do Inter-

vention) The intervention 𝑑𝑜(𝑋𝑗 = 𝑥 𝑗) on an ASEM is said to
create the CF-ASEM defined by the modified graph

G(𝑥 𝑗) = (𝑉, 𝐸∗)

and collection of counterfactual variables

(𝑋∗𝑘)𝑘∈𝑉

where

▶ the edges incoming to the node 𝑗 are set to zero, namely
𝑒∗
𝑖 𝑗
= 0 for all 𝑖,

▶ the remaining edges are preserved, namely 𝑒∗
𝑖𝑘
= 𝑒𝑖𝑘 , for all 𝑖

and 𝑘 ≠ 𝑗, and
▶ the counterfactual random variables are defined as

𝑋∗
𝑘

:= 𝑓𝑘(𝑃𝑎∗𝑘 , 𝜖𝑘), for 𝑘 ≠ 𝑗.

𝑋∗
𝑗

:= 𝑥 𝑗

where 𝑃𝑎∗
𝑘

are parents of 𝑋∗
𝑘

(𝑘 ≠ 𝑗) under 𝐸∗.

The do intervention modifies the graph G to G(𝑥 𝑗) by removing

edges. Pearl [10] has described this process as "surgery."
7

We

next define the 𝑑𝑜 notation to mean(
(𝑋ℓ )ℓ∈𝑉 : do(𝑥 𝑗)

)
:= (𝑋∗ℓ )ℓ∈𝑉 .
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Definition 7.3.9 (Counterfactual ASEM induced by Fix Inter-

vention) The intervention fix(𝑋𝑗 = 𝑥 𝑗) on an ASEM is said to
create the CF-ASEM defined by the modified SWIG

G̃(𝑥 𝑗) := (𝑉̃ , 𝐸̃),

and collection of counterfactual variables

(𝑋∗𝑘)𝑘∈𝑉 ∪ (𝑋
∗
𝑎)

where we split the node 𝑋𝑗 into 𝑋∗
𝑗

:= 𝑋𝑗 and the new deterministic
node 𝑎

𝑋∗𝑎 := 𝑥 𝑗 ,

where

▶ the node 𝑋𝑎 inherits only outgoing edges from 𝑋𝑗 and no
incoming edges; namely 𝑒𝑎𝑖 = 𝑒 𝑗𝑖 for all 𝑖 and 𝑒𝑖𝑎 = 0 for all
𝑖;

▶ the node 𝑋∗
𝑗

inherits only incoming edges from 𝑋𝑗 and no
outgoing edges, namely 𝑒𝑖 𝑗 = 𝑒𝑖 𝑗 for all 𝑖 and 𝑒 𝑗𝑖 = 0 for all
𝑖;

▶ all the remaining edges are preserved, namely 𝑒𝑖𝑘 = 𝑒𝑖𝑘 , for
all 𝑖 and 𝑘 ≠ 𝑗 and 𝑘 ≠ 𝑎; and

▶ the counterfactual random variables are assigned according
to

𝑋∗
𝑘

:= 𝑓𝑘(𝑃𝑎∗𝑘 , 𝜖𝑘), for 𝑘 ≠ 𝑎,

where 𝑃𝑎∗
𝑘

are parents of 𝑋∗
𝑘

(𝑘 ≠ 𝑗) under 𝐸̃.

Intervention induces new counterfactual distributions for the

endogenous variables; see Appendix 7.A for details.

7.4 Testable Restrictions and d-Separation

Next we examine the constraints on the data generating process

that are implied by a given DAG.

For this we turn to a fundamental theorem in DAGs. We will

define the concept of d-separation and prove that d-separation

implies conditional independence. The "d" here denotes "directional"

as the direction of arrows in a

DAG is important for understand-

ing conditional independence rela-

tions; see, e.g., Pearl [10] Chapter

11.

This property is typically

referred to as a global Markov condition that is implied by the

DAG. In order to define this property, we need a few more

definitions.
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𝑍 𝐷 𝑌

𝑋

Figure 7.9: The path 𝑌 ← 𝑋 → 𝐷
is blocked by conditioning on 𝑋.

𝑍 𝐷 𝑌

𝐶

Figure 7.10: The path 𝑌 → 𝐶 ← 𝐷
is blocked, but becomes open by

conditioning on 𝐶.

Definition 7.4.1 (Blocked Paths) A path 𝜋 is is said to be blocked
by a subset of nodes 𝑆 if and only if

(a) 𝜋 contains a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗 such
that 𝑚 is in 𝑆;

(b) Or, 𝜋 contains a collider 𝑖 → 𝑚 ← 𝑗, where neither 𝑚 nor
any descendant of 𝑚 is in 𝑆.

A path that is not blocked is called open.

In Figure 7.9 the (backdoor) path 𝑌 ← 𝑋 → 𝐷 is blocked by

𝑆 = 𝑋.

The following definition allows empty sets as conditioning

sets.

Definition 7.4.2 (Opening a Path by Conditioning) A path
containing a collider is opened by conditioning on it or its descen-
dant.

In Figure 7.10 the path 𝑌 → 𝐶 ← 𝐷 is blocked, but becomes

open by conditioning on the collider 𝑆 = 𝐶.

The following defines a key graphical property of DAG, which

can be used to deduce key statistical independence restric-

tions.

Definition 7.4.3 (d-Separation) Given a DAG G, a set of nodes
𝑆 d-separates nodes 𝑋 and 𝑌 if nodes in 𝑆 block all paths between
𝑋 and 𝑌. d-separation is denoted as

(𝑌 ⊥⊥𝑑 𝑋 | 𝑆)G.

The following is a fundamental result concerning the conditional

independence relations encoded in the graphs.

Theorem 7.4.1 (Verma and Pearl [11]; Conditional Indepen-

dence from d-Separation) d-Separation implies conditional inde-
pendence:

▶ Global Markov: (𝑌 ⊥⊥𝑑 𝑋 | 𝑆)G =⇒ 𝑌 ⊥⊥ 𝑋 | 𝑆.

Figuratively speaking, conditioning on 𝑆 breaks the information

flow between 𝑌 and 𝑋 , meaning that 𝑌 can’t be predicted by 𝑋 ,

conditional on 𝑆, and vice versa.

This fundamental result is very intuitive and can be verified

directly in simple examples. However, the formal proof is
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𝑍 𝑋 𝑌

𝑈

Figure 7.11: Example of d-

separation.

𝑍 𝑋 𝑌

𝑈

Figure 7.12: Example of d-

separation.

8: E.g, the reader can search

Google Scholar for conditional in-

dependence tests, exclusion restric-

tions tests, or conditional moment

tests.

difficult. The reverse implication is not true in general, but is

argued to hold "generically" as we discuss in Section 7.5.

Example 7.4.1 We show a couple of examples illustrating that

𝑑-separation implies conditional independence:

1. In Figure 7.11, the variables 𝑋 and 𝑌 are d-separated by

𝑆 = (𝑍,𝑈), because 𝑆 blocks all paths between 𝑋 and

𝑌. We also have𝑌 is independent of 𝑋 conditional on 𝑆:

By the Markov factorization property, p(𝑦, 𝑥 | 𝑢, 𝑧) =
p(𝑦 | 𝑥, 𝑧, 𝑢) p(𝑥 | 𝑧, 𝑢) = p(𝑦 | 𝑢, 𝑧) p(𝑥 | 𝑧, 𝑢). This

equality provides a testable restriction.

2. In Figure 7.12, the variables 𝑋 and𝑌 are d-separated by

𝑆 = 𝑍, because 𝑆 blocks all paths between 𝑋 and𝑌. We

also have 𝑌 is independent of 𝑋 conditional on 𝑆: By

the Markov factorization property, p(𝑦, 𝑥 | 𝑧) = p(𝑦 |
𝑧) p(𝑥 | 𝑧). This equality provides a testable restriction.

These testable restrictions are called exclusion restrictions in

econometrics because

𝑌 ⊥⊥ 𝑋 | 𝑍 is equivalent to p(𝑦 | 𝑥, 𝑧) = 𝑝(𝑦 | 𝑧), (7.4.1)

where the equivalence follows from Bayes’ law. In particular,

E[𝑔(𝑌) | 𝑋, 𝑍] = E[𝑔(𝑌) | 𝑍] (7.4.2)

for any bounded function 𝑔 of 𝑌. (7.4.2) means that 𝑋 is ex-

cluded from the best predictor of 𝑔(𝑌) using 𝑋 and 𝑍. There

are many tests of such restrictions available in the literature.
8

Perhaps one of the reasons for which there are many such tests

is that conditional independence testing is formally impossible;

see [12]. In practice, the formal impossibility means that any test

must be carefully crafted to target specific features within a sta-

tistical model as no generic, uniformly valid testing procedure

exists.

With specific structure provided, conditional independence

testing can be relatively straightforward. For example, it reduces

to testing hypotheses about linear regression coefficients within

a linear ASEM.

Implementation of Tests in Linear ASEMs. Consider the

hypothesis that 𝑌 is independent of 𝑋, given 𝑍. In linear

ASEMs, we can test this hypothesis by testing whether the
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coefficient 𝛼 = 0 in the projection equation

𝑌 = 𝛼′𝑋 + 𝛽′𝑍 + 𝜖, 𝜖 ⊥ 𝑍.

We can perform this test easily with the tools we’ve devel-

oped so far. See R: Dagitty Notebook and Python: Pgmpy

Notebook for an example.

Such tests are of course available under structures that are more

general than in linear model. For example, [12] exploits debiased

ML ideas (introduced in Chapter 4 and further developed in

Chapter 10 in this text) to set up testing of exclusion restrictions

in some nonlinear models.

Remark 7.4.1 (Equivalence of Local and Global Markov Prop-

erties) The local Markov property, the Markov factorization,

and the global Markov property are equivalent (Pearl [10]).

Therefore, one can use any of these properties to set up tests

of the validity of the Markov structure.

7.5 Falsifiability and Causal Discovery
★

Here, we provide a brief discussion of whether it is possible to

falsify (reject) a causal structure encoded by a DAG with data.

Equivalence Classes and Falsifiability

Definition 7.5.1 (Equivalence Classes) The class of DAGs that
induce the same joint distribution of variables is called an equiva-
lence class, and members of an equivalence class may be described as
Markov equivalent. DAGs that produce the same joint distribution
variables cannot be distinguished from each other.

Pearl [10] shows that the equivalence class of a DAG is given

by reversing any edges such that any such reversal does not

destroy existing or create new v-structures: converging arrows

whose tails are not connected by an edge.

The equivalence classes of a DAG are called PDAGs (partially

directed acyclic graphs). We plot them by erasing arrowheads

that can be oriented in the opposite direction without adding

or removing v-structures. We illustrate PDAGs in Figures 7.13

and 7.14.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
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𝑃(a)

𝑋

𝑌

𝑃(b)

𝑋

𝑌

Figure 7.13: The original DAG, (a),

and the equivalence class or PDAG,

(b), for the TSEM example, Exam-

ple 7.2.1. The undirected edges in

the PDAG mean that they can be

directed in any direction as long as

this does not create a cycle. In em-

pirical analysis directionality must

therefore be deduced and assumed

from the context.

(a)

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

(b)

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 7.14: The original DAG, (a),

and the equivalence class or PDAG,

(b), for the Pearl’s Example. The

undirected edges in the PDAG

mean that they can be directed in

any direction as long as this does

not create a cycle. Only two edges

can be reoriented here.

Figure 7.13 starts with the triangular structural equation model

from Example 7.2.1. Figure (a) is the original DAG implied by

the model. To produce the PDAG, shown in (b), we consider

reversing each of the arrows from 𝑋 to 𝑌, 𝑋 to 𝑃, and 𝑃 to 𝑌.

Because each of the nodes is connected, there are no v-structures

in the original DAG, and there is similarly no possible reversal

that could add a v-structure. As such, the PDAG is simply the

original DAG with all arrows removed. In this case, the DAG

structure produces no testable implications.

Figure 7.14 starts from a more elaborate DAG than the simple

TSEM. We refer to this DAG as "Pearl’s Example" because it

shows up repeatedly as an illustration in Pearl’s work; see,

e.g., [2]. Figure (a) is the original DAG defining the model. We

produce the PDAG in (b) by considering the reversal of all

combinations of arrows connecting the eight nodes. Here, there

are only two reversals, changing 𝑍2 → 𝑋3 to 𝑍2 ← 𝑋3 and

changing 𝑍1 → 𝑋1 to 𝑍1 ← 𝑋1, that do not destroy any existing

v-structures or create new v-structures. For example, reversing

the arrow 𝑍2 → 𝑋2 would destroy the v-structure 𝑍2 → 𝑋2

and 𝑍1 → 𝑋2. As such, the PDAG in (b) is almost identical to

the DAG in (a) with the exception that the arrows between 𝑍2

and 𝑋3 and between 𝑍1 and 𝑋1 have been removed. In this case,

the DAG encodes a model which includes exclusion restrictions

or testable implications and is potentially falsifiable.

Remark 7.5.1 (Falsifiability) The edge matrix 𝐸 of a graph

is triangular if rows of 𝐸 can be rearranged to have only 1’s

below the diagonal. In the absence of any further restrictions,

an ASEM with graph G = (𝑉, 𝐸) has testable implications if

𝐸 is not triangular. If 𝐸 is triangular, then any law p of any

arbitrary collection of random variables (𝑋𝑗)𝑗∈𝑉 indexed by

𝑉 can be factorized as

p({𝑥} 𝑗∈𝑉) =
∏
𝑗∈𝑉

p(𝑥 𝑗 | 𝑝𝑎 𝑗).

With population data we have p and can check if it factorizes

according to 𝑉 . If matrix 𝐸 is triangular, p always obeys the

factorization property. This is to say that there are no exclusion

restrictions in the model.

Example 7.5.1 (TSEM continued) In the TSEM example (Ex-

ample 7.2.1, we have vertices 𝑉 = {1, 2, 3} identified with
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𝑌, 𝑃, 𝑋 and the "triangular" edge set

𝐸 =
©­«

0 0 0

1 0 0

1 1 0

ª®¬ .
In the absence of other assumptions, the corresponding TSEM

implies no falsifiable restrictions. The equivalence class of the

DAG model for this case is generated by rearranging the rows

of 𝐸 in 3! ways, which is equivalent to rearranging the names

(𝑌, 𝑃, 𝑋) for the nodes.

Example 7.5.2 (Pearl’s Example) The DAG given in Figure

7.14 has vertices 𝑉 = {1, ..., 8} identified with 𝑌, 𝑀, 𝐷, 𝑋1,

𝑋2, 𝑋3, 𝑍1 ,𝑍2 and the edge set

𝐸 =

©­­­­­­­­­­­«

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 1 0 0

ª®®®®®®®®®®®¬
.

This edge set cannot be rearranged to have only ones below

the diagonal. The DAG in this case has testable implications,

and the equivalence class of the DAG model can only involve

changing edges between 𝑍1 and 𝑋2 and between 𝑍2 and 𝑋3.

Faithfulness and Causal Discovery

Given that DAGs effectively encode conditional independence

relations, it is tempting to try to infer conditional independence

directly from the data. Causal discovery refers to methods that

indeed attempt to learn conditional independence relationships

from data with one application being attempting to recover

causal structures. The possibility of recovering causal structures

perfectly from the population data critically relies on the concept

of faithfulness.

Recall that d-separation implies conditional independence, but

the reverse implication

𝑌 ⊥⊥ 𝑋 |𝑆 =⇒ (𝑌 ⊥⊥𝑑 𝑋 |𝑆)G (7.5.1)
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is not true in general. If we restrict attention to the set of

distributions 𝑝 of random variables associated with graph G
such that implication (7.5.1) holds, we are said to impose the

faithfulness assumption on p.

Example 7.5.3 (Unfaithfulness) A trivial example is the DAG

𝑋 → 𝑌

where

𝑌 := 𝛼𝑋 + 𝜖𝑌 ; 𝑋 := 𝜖𝑋 ;

with 𝜖𝑋 and 𝜖𝑌 independent standard normal variables. Con-

sider 𝑆 to be the empty set. In this model we have that𝑌 ⊥⊥ 𝑋
when 𝛼 = 0, but 𝑌 and 𝑋 are not d-separated in the DAG

𝑋 → 𝑌. The distribution p of (𝑌, 𝑋) corresponding to 𝛼 = 0

is said to be unfaithful. However, the exceptional point 𝛼 = 0

has a measure 0 on the real line, so this exception is said to

be non-generic.

The observation about the simple example above generalizes: If

probabilities p themselves are viewed as generated by Nature

as a draw from a continuum P, where each p ∈ P factorizes

according to G, then the set of models where the reverse impli-

cation (7.5.1) does not hold has measure zero. This observation

motivates the argument that the faithfulness assumption is a

weak requirement; that is, a given p is "very unlikely" to be

unfaithful.

Remark 7.5.2 (Causal Discovery) The use of the faithfulness

assumption should allow us to discover the equivalence class

of the true DAG from the population distribution p: We

can compute all valid conditional independence relations

and then discover the equivalence class of DAGs. See, for

example, the PC algorithm [13] for an explicit causal discovery

algorithm and the review provided in [14]. We can then apply

contextual knowledge to further orient the edges of the graph.

Even though the set of unfaithful distributions has measure

zero, the neighborhood of this set may not be small in high-

dimensional graphs, which creates difficulty in inferring the

DAG structure from an estimated version p̂.

Example 7.5.4 (Unfaithfulness Continued) In the trivial exam-

ple above, suppose that we have that 𝛼̂ = .1 and 𝛼̂ ∼ 𝑁(𝛼, 𝜎2)
where 𝜎 = .1. Then we can’t be sure whether 𝛼 = 0, 𝛼 = .1,
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Figure 7.15: Uhler et. al [15]: A set of "unfaithful" distributions p in the simple triangular Gaussian SEM/DAG:

𝑋1 → 𝑋2 , (𝑋1 , 𝑋2) → 𝑋3. The set is parameterized in terms of the covariance of (𝑋1 , 𝑋2 , 𝑋3). The right panel shows

the set of unfaithful distributions, and the three other panels show 3 of 6 components of the set. Each of the cases

corresponds to the non-generic case which would make faithfulness fail, leading to discovery of the wrong DAG

structure. While the exact setting where faithfulness would fail is non-generic, there are many distributions that are

"close" to these unfaithful distributions. This observation means that, in finite samples, we are not able distinguish

models that are close to the set of unfaithful distributions from unfaithful distributions and may thus also discover

the wrong DAG structure and correspondingly draw incorrect causal conclusions.

or 𝛼 equals any other number, though say a 95% confidence

interval would have 𝛼 between−.1 and .3. Therefore, we can’t

be sure whether the true model is

𝑋 → 𝑌 or 𝑋 𝑌.

Informally speaking, it is impossible to discover the true graph

structure in this example when 𝛼 ≈ 0. In econometrics jargon,

this statement amounts to saying that we can’t distinguish

exact exclusion restrictions from "approximate" exclusion

restrictions.

Thus, it is hard to distinguish exact independence from ap-

proximate independence with finite data. In high-dimensional

graphs, the possibility that 𝑝̂ lands in the "near-unfaithful" re-

gions can be substantial, as Uhler et. al.[15]’s analysis shows. See Uhler et al’s [15] figure; repro-

duced in Figure 7.15.

The observations above motivate a form of sensitivity analysis

– e.g., Conley et al. [16] – where one replaces exact exclusion

restrictions by approximate exclusion restrictions that can’t be

distinguished from exact exclusion restrictions and examines

the sensitivity of causal effect estimates.

Notebooks

▶ R: Dagitty Notebook employs the R package "dagitty" to

analyze Pearl’s Example (introduced in Figure 7.14) as

well as simpler ones. Python: Pgmpy Notebook employs

the analogue with Python package "pgmpy" and conducts

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
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the same analysis. Both packages automatically list all

conditional independence in a DAG; these are obtained

by using the graphical d-separation criterion. We then go

ahead and test those restrictions assuming a linear ASEM

structure. The notebook also illustrates the analysis from

the next chapter.

▶ R: Dosearch Notebook employs the R-package "dosearch"

to analyze Pearl’s Example (introduced in Figure 7.14).

This package automatically finds identification answers

to causal queries, allowing us to also answer these types

of queries under different data sources, sample selec-

tion, and other deviations from the standard framework.

Python: Dosearch Notebook does the same thing by load-

ing the R "dosearch" package into Python.

Additional resources

▶ Dagitty.Net is an excellent online resource where you can

plot and analyze causal DAG models online. It contains

many interesting examples of DAGs used in empirical

analysis in various fields.

▶ Causalfusion.Net is another excellent online resource

where you can plot and analyze causal DAG models.

This resource covers many different deviations from the

standard framework.

Study Problems

The study problems ask learners to analyze Pearl’s Example

(introduced in Figure 7.14). The provided notebooks are a useful

starting point for answering these questions.

Recall that Pearl’s Example is structured as follows:

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 7.16: Pearl’s Example

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dosearch.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-dosearch.ipynb
http://www.dagitty.net/dags.html
https://causalfusion.net/
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1. Consider Pearl’s Example and answer the following ques-

tions. The best way to answer this question is to use

computational packages (but please explain the princi-

ples the package is using).

a) What are the testable implications of the assump-

tions embedded in the model? Hint: The testable

implications are derived from the d-separation cri-

terion.

b) Assume that only variables 𝐷, 𝑌, 𝑋2 and 𝑀 are

measured, are there any testable implications?

c) Now assume only 𝐷, 𝑌, and 𝑋2 are measured. Are

there any testable implications?

d) Now assume that all of the variables but 𝑋2 (7 in

total) are measured. Are there any testable restric-

tions?

e) Assume that an alternative model, competing with

Model 1, has the same structure, but with the 𝑋2 →
𝐷 arrow reversed. What statistical test would distin-

guish between the two models?

2. Work through the proof that d-separation implies con-

ditional independence in Section 7.C. Supply the steps

of the proof that were left as a homework or reading

exercise.

7.A Counterfactual Distributions
★

Interventions induce new counterfactual distributions for en-

dogenous variables. We can readily compute these distributions

from the definitions of interventions, as illustrated in the fol-

lowing for the do intervention.

Example 7.A.1 (Counterfactual Law for Do Intervention in

LS-DAG (Example 7.3.1)) We can write the counterfactual

distribution of 𝑌(𝑑), 𝑍, 𝑋 in terms of the factual distribution

as

p(𝑦, 𝑧, 𝑥 : do(𝑑)) = p(𝑦 |𝑑, 𝑥) p(𝑧) p(𝑥).

Indeed,

p(𝑦, 𝑧, 𝑥 : do(𝑑)) = p(𝑦 |𝑧, 𝑥 : 𝑑𝑜(𝑑)) p(𝑧, 𝑥 : 𝑑𝑜(𝑑)),

by definition and Bayes’ law. We also have p(𝑦 |𝑧, 𝑥 : 𝑑𝑜(𝑑)) =
p(𝑦 |𝑑, 𝑥) and p(𝑧, 𝑥 : 𝑑𝑜(𝑑)) = p(𝑧, 𝑥) by the definition of

the counterfactual ASEM, and p(𝑧, 𝑥) = p(𝑧) p(𝑥) by indepen-
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dence of 𝑍 and 𝑋.

Theorem 7.A.1 (Counterfactual Law Induced by the Do In-

tervention) The induced law p𝑋∗ of the counterfactual variables
𝑋∗ = (𝑋∗

ℓ
)ℓ∈𝑉\𝑗 induced by 𝑑𝑜(𝑋𝑗 = 𝑥 𝑗) can be stated in terms of

the factual law as follows:

p({𝑥ℓ }ℓ∈𝑉\𝑗 : do(𝑥 𝑗)) := p𝑋∗({𝑥}ℓ∈𝑉\𝑗) =
∏
ℓ∈𝑉\𝑗

p(𝑥ℓ | 𝑝𝑎∗ℓ ),

where {𝑥}ℓ∈𝑉\𝑗 denotes the point where the density function is
evaluated, 𝑝𝑎∗

𝑗
denotes the parental values under the new edge

structure, and p denotes the factual law.

The result follows immediately from the Markov factorization

property and the definition of counterfactuals under the do

intervention. This characterization is interesting in its own right,

because it can be used for identification and inference on the

counterfactual laws directly, provided that we are willing to

model the distribution of the variables. The use of Bayesian

methods can be fruitful for this purpose.

These type of formulas are often called "g-formulas" and first

appeared in the work [17] of James Robins in 1986 (using another

"tree-based" form of causal graphs).

7.B Review of Conditional Independence

The following lemma reviews various ways in which conditional

independence can be established.

Lemma 7.B.1 (Equivalent Forms of Conditional Indepen-

dence) Variables 𝑋 and 𝑌 are conditionally independent given 𝑍
if and only if one of the following conditions is met:

1. p(𝑥 | 𝑦, 𝑧) = p(𝑥 | 𝑧) if p(𝑦, 𝑧) > 0.
2. p(𝑥 | 𝑦, 𝑧) = 𝑓 (𝑥, 𝑧) for some function 𝑓 .
3. p(𝑥, 𝑦 | 𝑧) = p(𝑥 | 𝑧)p(𝑦 | 𝑧) if p(𝑧) > 0.
4. p(𝑥, 𝑦 | 𝑧) = 𝑓 (𝑥, 𝑧)𝑔(𝑦, 𝑧) for some functions 𝑓 and 𝑔.
5. p(𝑥, 𝑦, 𝑧) = p(𝑥 | 𝑧)p(𝑦 | 𝑧)p(𝑧) if p(𝑧) > 0.
6. p(𝑥, 𝑦, 𝑧) = p(𝑥, 𝑧)p(𝑦, 𝑧)/p(𝑧) if p(𝑧) > 0.
7. p(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑧)𝑔(𝑦, 𝑧) for some functions 𝑓 and 𝑔.

As a reading exercise prove the equivalence of (1) and (2), of (1)

and (7), and of any other pair.
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9: We follow the proof sketch pre-

sented in Nevin L. Zhang’s lecture

notes, but rely on ASEMs to sim-

plify some arguments and supply

a proof for a key claim.

10: Suppose that any such node has

a parent in Y. If it were a node

in X, then we get a violation of d-

separation. If it were a node in Z1,

then we have that Z1 has one par-

ent in X and one parent in Y and

therefore it is a collider that was in-

cluded in Z, violating d-separation.

11: Suppose that any such node has

a parent in X. By the definition of Z1

it has to be a node in Y. But then we

have that a node in Y has a parent

in X, violating d-separation.

X Y

Z1

Z2

̸

̸

Figure 7.17: Pictorial repre-

sentation of key argument in

Lemma 7.C.1.

12: Prove this as a reading exercise

by integrating over the variables in

U in reverse order with respect to

the DAG ordering.

13: Prove this as a reading exercise,

i.e., prove bullet (7) of Lemma 7.B.1.

7.C Theoretical Details of d-Separation
★

Here we explain why d-separation implies conditional indepen-

dence.
9

Lemma 7.C.1 (Easy Form of d-Separation) Let X, Y, and Z be
three disjoint sets of variables in an ASEM such that their union is
an ancestral set, that is, for any 𝑋 ∈ X ∪ Y ∪ Z and 𝑋′ < 𝑋 we
have 𝑋′ ∈ X ∪ Y ∪ Z. If Z 𝑑-separates X and Y, then

X ⊥⊥ Y | Z.

Proof. Let Z1 be the set of nodes in Z that have parents in X. And

let Z2 = Z\Z1.

Because Z d-separates X and Y, we have that (see Figure 7.17):

▶ For any𝑊 ∈ X ∪ Z1, 𝑃𝑎𝑊 ⊆ X ∪ Z;
10

▶ For any𝑊 ∈ Y ∪ Z2, 𝑃𝑎𝑊 ⊆ Y ∪ Z.
11

Let U denote the set of variables not included in X, Y, or Z. We

then obtain a factorization

p(x, z, y) =
∫ ∏

𝑊∈U∪X∪Y∪Z
p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )𝑑u

=

∫ ∏
𝑊∈U

p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )𝑑u

×
∏

𝑊∈X∪Z1

p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )

×
∏

𝑊∈Z2∪Y
p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 ),

where in the last equality we used the fact that u does not appear

at all in the second and third factors, since X∪Y∪ Z is ancestral.

Moreover, the second factor is a function of x and z alone and

the third factor is a function of y and z alone. The integral is 1

by total probability.
12

It follows that X ⊥⊥ Y | Z.
13

Now we restate the main claim we’d like to demonstrate, which

is that d-separation implies conditional independence.

Global Markov. Let 𝑋 and𝑌 be two variables and Z be a set

of variables that does not contain 𝑋 or 𝑌. If Z d-separates

𝑋 and 𝑌, then

𝑋 ⊥⊥ 𝑌 | Z

Proof of Theorem 7.4.1.

https://cse.hkust.edu.hk/bnbook/pdf/l03.h.pdf
https://cse.hkust.edu.hk/bnbook/pdf/l03.h.pdf
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14: Prove this explicitly, as a read-

ing exercise, by integrating over all

variables in X\{𝑋} and Y\{𝑌} and

invoking Lemma 7.B.1.

15: In this proof, we denote with

𝑈 - - 𝑉 a path from a node 𝑈 to

a node 𝑉 and with 𝑈 99K 𝑉 a di-

rected path from𝑈 to 𝑉 .

Let X be the set of all ancestors of {𝑋,𝑌} ∪ Z that are not
d-separated from 𝑋 by Z. Let Y be the set of all ancestors of

{𝑋,𝑌} ∪ Z that are neither in X nor in Z.

Key Claim: The set Z d-separates the sets X and Y.

The claim follows from the careful use of the definition of

d-separation, and is proven below.

Given the key claim, Lemma 7.C.1 implies that X ⊥⊥ Y | Z, since

X∪Y∪Z is ancestral by its exhaustive construction. This implies

that there must exist functions 𝑓 (x, z) and 𝑔(z, y) such that

p(x, z, y) = 𝑓 (x, z)𝑔(z, y).

Since 𝑋 is in X and 𝑌 in Y, the conclusion is reached.
14

Proof of the Key Claim. Suppose that Z does not d-separate the

sets X and Y and that there exists a node 𝑋′ ∈ X which is

not d-separated from some node 𝑌′ ∈ Y. Thus, there is an

open path 𝑋 - - 𝑋′,15 and an open path 𝑋′ - - 𝑌′. Consider the

concatenation of these two paths. If 𝑋′ is not a collider on this

concatenated path, then the path𝑋 - - 𝑋′ - - 𝑌′ is also open, and

therefore𝑋 is not d-separated from𝑌′, which is in contradiction

with the definition of X and Y. Thus 𝑋′ has to be a collider on

this concatenated path. Moreover, note that since we are only

restricting our analysis to the ancestral set 𝐴𝑛{𝑋,𝑌}∪Z, we have

that 𝑋′ must be an ancestor of either Z or 𝑌 or 𝑋:

If𝑋′ is an ancestor of some node in Z then the path𝑋 - - 𝑋′ - - 𝑌′

is again open, leading to a contradiction with the definition of

X and Y.

If 𝑋′ is an ancestor of 𝑌, then there is a directed path 𝑋′ 99K 𝑌.

If that path is open, then there is an open path 𝑋 - - 𝑋′ 99K 𝑌,

violating the fact that Z was d-separating 𝑋 from 𝑌. For the

path to be closed, it must be that some node 𝑍 ∈ Z is on the

path. However, in this case 𝑋′ is an ancestor of a node in Z,

which has already been excluded.

Finally, if 𝑋′ is an ancestor of 𝑋, then there exists a directed

path 𝑋′ 99K 𝑋. This path also has to be open, as if a node in Z
existed on that path, then 𝑋′ would be an ancestor of a node

in Z, which has been excluded. However, in this case, we have

an open path 𝑌′ - - 𝑋′ 99K 𝑋, from 𝑌′ to 𝑋, which violates the

definition of X and Y.
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