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"if ’good’ is taken to mean ’best’ fit, it is tempting to

include anything in 𝑥 that helps predict [treatment]"

– Jeffrey Wooldridge [1].

DAGs give us an intuitive approach to take domain knowledge

and turn it into an identification strategy. In this section, we

focus on identification by conditioning and discuss graphical

criteria that lead to the construction of valid adjustment sets

for the identification of average causal effects via regression

adjustment. We also discuss how graphical criteria can help us

differentiate between "good" and "bad" controls.
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8.1 Valid Adjustment Sets

Consider any variable 𝐷 of an ASEM as a treatment of interest

and any of its descendants 𝑌 as an outcome of interest. An

adjustment set 𝑆 is said to be valid for identification of the

causal effect of𝐷 on𝑌 if the conditional exogeneity/ignorability

condition holds

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

In what follows, we present an exhaustive (complete) approach

for finding valid adjustment sets by using SWIGs.

We write down the counterfactual SWIG induced by the

fix(𝐷 = 𝑑)

intervention, which operates on all structural equations

defining the descendants of 𝐷 by setting 𝐷 = 𝑑 in these

equations.

Then, if we have that the potential outcome 𝑌(𝑑) is 𝑑-

separated from the (policy) variable 𝐷 by a set of variables

𝑆, conditional exogeneity/ignorability holds:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

Given that conditional exogeneity/ignorability holds, we can

identify counterfactual expectations,

E[𝑌 |𝑆 = 𝑠 : do(𝑑)] := E[𝑌(𝑑)|𝑆 = 𝑠],

from expectations of observed variables,

E[𝑌 |𝑆 = 𝑠, 𝐷 = 𝑑],

provided that the positivity condition 𝑝(𝑠, 𝑑) > 0 holds. The

agreement between counterfactual and conditional expectations

follows because

E[𝑌(𝑑)|𝑆 = 𝑠] = E[𝑌(𝑑)|𝐷 = 𝑑, 𝑆 = 𝑠]

by exogeneity and

E[𝑌(𝑑)|𝐷 = 𝑑, 𝑆 = 𝑠] = E[𝑌 |𝐷 = 𝑑, 𝑆 = 𝑠]

by consistency.
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𝑍 𝐷 𝑑 𝑌(𝑑)

𝑋

Figure 8.1: CF LS-DAG induced by

fix(𝐷 = 𝑑) intervention.

We can recover unconditional counterfactual means by integra-

tion:

E[𝑌 : do(𝑑)] := E[𝑌(𝑑)] = E[E[𝑌 |𝑆, 𝐷 = 𝑑]],

provided that the positivity condition 𝑝(𝑠, 𝑑) > 0 for each 𝑠 in

the support of 𝑆 | 𝐷 = 𝑑 holds.

Example 8.1.1 (Identification in LS-DAG.) In the SWIG graph

in Figure 8.1 corresponding to the LS-DAG model from Exam-

ple 7.3.1, we see that either 𝑆 = 𝑋 or 𝑆 = (𝑋, 𝑍) d-separates

𝑌(𝑑) from𝐷. Therefore, either choice of 𝑆 provides a valid ad-

justment set for identifying counterfactual predictions. Here

conditioning on 𝑍 is not necessary, though we maintain ro-

bustness with respect to the presence of a directed edge from

𝑍 to 𝑌 by including 𝑍 in the conditioning set.

We can identify the entire conditional distribution

P(𝑌(𝑑) ≤ 𝑡 | 𝑆 = 𝑠)

from the conditional distribution

P(𝑌 ≤ 𝑡 | 𝐷 = 𝑑, 𝑆 = 𝑠).

We achieve identification of the distribution by replacing 𝑌

with 1(𝑌 < 𝑡) in all previous statements and applying the same

arguments for each 𝑡 ∈ ℝ. The unconditional distribution of

potential outcomes is retrieved by integrating out 𝑆:

P(𝑌(𝑑) ≤ 𝑡) := E[P(𝑌(𝑑) ≤ 𝑡 | 𝑆)].

The following theorem, essentially due to [2], records the dis-

cussion formally.

Theorem 8.1.1 (A Complete Criterion for Identification by

Conditioning) Consider any ASEM with DAG G. Let us re-label
a policy node 𝑋𝑗 as 𝐷, and let 𝑌, an outcome of interest, be any
other descendant of 𝐷.

Consider a SWIG DAG G̃(𝑑) which is induced by the fix(𝐷 = 𝑑)
intervention. Consider any other subset of nodes 𝑆 that appears in
both G and G̃(𝑑), such that

𝑌(𝑑) is d-separated from 𝐷 by 𝑆 in G̃(𝑑).
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𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 8.2: A DAG in Pearl’s Exam-

ple

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷 𝑑

𝑀(𝑑)

𝑌(𝑑)

Figure 8.3: The DAG induced by the

Fix/SWIG intervention fix(𝐷 = 𝑑)
in Pearl’s Example.

1: See [3] for a more detailed dis-

cussion of identification by condi-

tioning under limited knowledge

of DAGs.

▶ Then the following conditional exogeneity/ignorability holds:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

▶ Then

E[𝑌(𝑑)|𝑆 = 𝑠] = E[𝑌 | 𝐷 = 𝑑, 𝑆 = 𝑠]

holds for all 𝑠 such that 𝑝(𝑑, 𝑠) > 0.

Example 8.1.2 (Pearl’s Example) Consider the DAG in Figure

8.2, which we introduced as Pearl’s Example in Figure 7.14,

and the corresponding ASEM, which we don’t write out.

Here, we are interested in the causal effect 𝐷 → 𝑌, that is,

the effect 𝑑 ↦→ 𝑌(𝑑). The corresponding SWIG-intervention

DAG is shown in Figure 8.3. In this DAG, valid adjustment

sets 𝑆 include

{𝑋1, 𝑋2}, {𝑋2, 𝑋3}, {𝑋2, 𝑍2}, {𝑋2, 𝑍1},

because each d-separates 𝑌(𝑑) and 𝐷 by blocking all open

paths. Conditioning on just 𝑋2 won’t work, because it blocks

the inner backdoor paths from 𝑌(𝑑) to 𝐷, but opens the outer

path on which 𝑋2 is a collider. To close this opened path, it

suffices to also condition on one of 𝑋1, 𝑋3, 𝑍1 or 𝑍2.

8.2 Useful Adjustment Strategies

Theorem 8.1.1 provides an exhaustive criterion for finding

valid adjustment sets. We now discuss other frequently used

strategies for obtaining valid adjustment sets which are strictly

less general. Some of these strategies are quite helpful because

they are either very simple to apply or can also be used under

partial knowledge of the DAG.
1

We consider three approaches that allow us to identify the

causal effect of D on Y:

▶ Conditioning on one of all parents of 𝑌 (that are not

descendants of 𝐷), all parents of 𝐷, or all parents of

both𝐷 and𝑌 is sufficient. This approach provides a valid

adjustment set irrespective of the remaining structure of

the problem.

▶ Conditioning using the backdoor criterion enables us to

find all minimal adjustment sets.
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▶ Conditioning on all common causes of 𝐷 and 𝑌 is also

sufficient.

Conditioning on Parents

A very simple strategy is conditioning on one of the parents of

𝐷, the parents of 𝑌, or the parents of both 𝐷 and 𝑌.

Example 8.2.1 (Pearl’s Example Continued) One simple prin-

ciple is that conditioning on parents of 𝐷, namely 𝑋1 and

𝑋2, is sufficient. Alternatively, conditioning on all parents

of 𝑌 that are non-descendants of 𝐷, namely 𝑋2 and 𝑋3, is

also sufficient. We should not condition on 𝑀, because it is a

descendant of 𝐷.

Corollary 8.2.1 (Adjustment for Parents) Consider any ASEM.
Re-label a policy node 𝑋𝑗 as 𝐷, and let 𝑌, an outcome of interest,
be any other descendant of 𝐷.

▶ Let 𝑍 be all parents of 𝐷, and let 𝐴 be any other set of nodes
that are not descendants of 𝐷. Then 𝑆 = (𝐴, 𝑍) is a valid
adjustment set.

▶ Let 𝑍 be the set of all parents of 𝑌 that are non-descendants
of 𝐷 and let 𝐴 be any other set that are not descendants of
𝐷. Then 𝑆 = (𝐴, 𝑍) is a valid adjustment set.

Note that 𝐴 is allowed to be an empty set. Also note that, in

the second case, the additional adjustment set 𝐴 is redundant,

since p(𝑦 | 𝑎, 𝑧, 𝑑) = p(𝑦 | 𝑧, 𝑑) in this case.

Adjusting for parents is a very useful strategy, because it only

requires knowledge of parents in a DAG without precise knowl-

edge of the remaining graph structure. Conditioning on parents

is also behind the propensity score strategies used in many

experimental or quasi-experimental empirical analyses. If the

propensity score is known, it can be used as a parent of 𝐷

itself. Finally, conditioning on parents of 𝑌 is most useful for

attaining maximal statistical efficiency, but may be less robust

than conditioning on both sets of parents under unforeseen

deviations from the given graph structure. See [3] for further

detailed discussion of robustness of adjusting for both sets of

parents.
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2: We may think that conditioning

on 𝑍 here could be useful to un-

cover heterogeneity. However,𝑌(𝑑)
does not depend on𝑍, so condition-

ing on 𝑍 is not useful for describing

heterogeneity and can decrease the

efficiency of the estimator.

Conditioning by Backdoor Blocking

Pearl [4] developed the following powerful criterion.

Corollary 8.2.2 (Backdoor Criterion) Consider any ASEM. Re-
label a policy node 𝑋𝑗 as 𝐷, and let 𝑌, an outcome of interest, be
any other descendant of 𝐷. The adjustment set 𝑆 is valid if the
backdoor criterion is satisfied: No element of 𝑆 is a descendant of
𝐷, and all backdoor paths from 𝑌 to 𝐷 are blocked by 𝑆.

In other words, if a collection of random variables 𝑆 satisfies

the backdoor criterion with respect to (𝐷,𝑌), then conditioning

on 𝑆 identifies the causal effect of 𝐷 on 𝑌. The basic idea is

that if we block the backdoor path, we remove all channels of

non-causal association between 𝐷 and 𝑌.

Example 8.2.2 (Pearl’s Example Again, using the Backdoor

Criterion) The graph in Figure 8.2 has two backdoor paths

from 𝐷 to 𝑌: the inner path 𝐷 ← 𝑋2 → 𝑌 and the outer

path 𝐷 ← 𝑋1 ← 𝑍1 → 𝑋2 ← 𝑍2 → 𝑋3 → 𝑌. Conditioning

on just 𝑋2 does not allow us to identify the causal effect of

𝐷 on 𝑌 because 𝑋2 blocks the inner backdoor path from

𝑌 to 𝐷 but opens the outer path on which 𝑋2 is a collider.

To close this opened path, it suffices to condition on 𝑋1, 𝑋3,

𝑍1, or 𝑍2. For example, conditioning sets 𝑆1 = {𝑋1, 𝑋2} or

𝑆2 = {𝑋2, 𝑋3} are valid. Figuring out other valid conditioning

sets is left as an exercise. (You can find the answers using the

notebook R: Dagitty Notebook or Python: Pgmpy Notebook.)

Conditioning on 𝑀 is obviously not valid – it is a descendant

of 𝐷, an intermediate outcome.

Application of the backdoor criterion can produce all minimal

adjustment sets. Relative to the complete strategy formalized

in Theorem 8.1.1, we exclude the descendants of 𝐷 from valid

adjustment sets when we focus on backdoor paths. A simple

example of a graph where the backdoor criterion does not find

all valid adjustment sets is

𝑍← 𝐷 → 𝑌.

Here conditioning on 𝑍 is valid but unnecessary. Conditioning

on 𝑍 may thus decrease statistical efficiency.
2

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
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𝑋 = (𝑋1, 𝑋2, 𝑋3)

𝐷

𝑀

𝑌

Figure 8.4: Reduced DAG for Pearl’s

Example

Conditioning on All Common Causes of 𝐷 and 𝑌

Another simple and widely used adjustment strategy is con-

ditioning on all common causes of the outcome variable of

interest and the treatment variable.

Example 8.2.3 (Pearl’s Example Again, using the All Common

Causes Criterion) The set of common causes of 𝐷 and 𝑌 is

{𝑍1, 𝑍2, 𝑋2}. This set is a valid adjustment set that differs

from the sets found using the parental strategy. We can push

the All Common Causes criterion further. For example, we

can omit 𝑍1 and 𝑍2 from the DAG, and we can create a new

node 𝑋 = (𝑋1, 𝑋2, 𝑋3) producing the DAG shown in Figure

8.4. This DAG corresponds to a valid ASEM model where 𝑋

now represents all common causes of 𝐷 and 𝑌, making it a

sufficient adjustment set. This set is bigger than some of the

sets found by the previous criteria. It is also tempting to see

if the "root common" causes 𝑍1 and 𝑍2 in the original DAG,

Figure 8.2, form a valid adjustment set – and they actually do

not (why?).

Let 𝐴𝑛𝑋 denote the set of strict ancestors of node 𝑋, where

strict means that 𝑋 is excluded. That is,

𝐴𝑛𝑋 = 𝐴𝑛𝑋 \ 𝑋.

Corollary 8.2.3 (Adjustment for All Common Causes) Con-
sider any ASEM. Re-label a policy node 𝑋𝑗 as 𝐷, and let 𝑌, an
outcome of interest, be any other descendant of 𝐷. Let 𝑆 be the
intersection of the strict ancestors of 𝐷 and 𝑌, called the common
causes:

𝑆 = (𝐴𝑛𝐷 ∩ 𝐴𝑛𝑌).

Then 𝑆 is a valid adjustment set. Furthermore, the set of variables 𝑆′
that completely mediates the effects of 𝑆 on𝑌 and𝐷 also constitutes
a valid adjustment set.

The strategy above is commonly used in empirical work. How-

ever, [3] recommend adjusting for the union 𝑆 of causes of 𝑌

or 𝐷 (excluding descendants of 𝐷) in practice as they formally

quantify this strategy as the maximally robust strategy under

perturbations of a specified DAG structure that preserves 𝑆.

This strategy is useful when we don’t know the parents of 𝑌 or

𝐷, but only know that 𝑆 are their ancestors.
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3: The content in this section draws

heavily from the excellent research

paper of Cinelli, Forney and Pearl

[5].

Corollary 8.2.4 (Adjustment for the Union of Causes) Consider
any ASEM. Re-label a policy node 𝑋𝑗 as 𝐷, and let 𝑌, an outcome
of interest, be any other descendant of 𝐷. Let 𝑆 be the union of the
ancestors of 𝐷 and 𝑌 that excludes descendants of 𝐷 other than 𝑌:

𝑆 = 𝐴𝑛𝐷 ∪ 𝐴𝑛𝑌 \ 𝐷𝑠𝐷 .

Then 𝑆 is a valid adjustment set.

Example 8.2.4 (Pearl’s Example Continued) Application of

the Union of Causes criterion gives {𝑍1, 𝑍2, 𝑋1, 𝑋2, 𝑋3} as a

valid adjustment set.

8.3 Examples of Good and Bad Controls

We now present a series of simple example DAGs that might

arise in empirical research. Within these examples, we discuss

what would be good and bad variables to adjust for in each

case (aka good and bad controls), when one is interested in

estimating the average treatment effect of a treatment 𝐷 on an

outcome𝑌.
3

Similar to the collider bias examples we presented

in Section 6.3, we will see how adjusting for some of the observed

variables can introduce bias and lead to estimating a parameter

that is far from the causal effect of interest. In each case, we will

denote the candidate control of interest with 𝑍 and will denote

unobserved variables with𝑈 . We depict unobserved variables

with a dashed circle in the figures.

We start by analyzing a group of potential control variables

that in most empirical applications would correspond to pre-
treatment variables, i.e. variables whose value was determined

prior to the treatment assignment. It is common empirical prac-

tice to adjust for as many pre-treatment variables as available in

an attempt to ensure that conditional ignorability holds. How-

ever, we will see that bias can be introduced by controlling even

for pre-treatment variables if one is not careful. Rather than

always control for all pre-treatment variables, a better approach

is to adjust only for pre-treatment variables that are ancestors

of either the treatment, the outcome, or both. If one is willing

to believe that identification by conditioning is feasible, then

following this approach is a safe strategy.

We then consider the use of post-treatment variables, i.e. variables

that correspond to quantities whose value is determined after

the treatment assignment. We will see that in this case there
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are relatively few good control cases. In some cases, controlling

for post-treatment variables might not hurt and may even

improve precision (reduce variance). However, such settings

seem unlikely to be common in empirical practice. Hence, as a

high-level rule, controlling for post-treatment variables should

be avoided when one is interested in estimating causal effects.

Finally, we provide a separate discussion of post-treatment but

pre-outcome variables, i.e. variables whose value is determined

prior to the determination of the value of the outcome of interest.

Pre-outcome variables should be included if one is interested in

estimating direct effects of the treatment on the outcome while

excluding indirect effects. This type of direct effect is referred

to as a controlled direct effect to distinguish it from other forms

of direct effects appearing in mediation analysis. We will see

again that one should be careful that the mediation variables

that one conditions on are not themselves confounded through

unobserved factors even in this case.

Pre-Treatment Variables or Proxies of

Pre-Treatment Variables

Observed common causes or proxies of common causes. A

common example of a good control that we have discussed so

far is an observed common cause, 𝑍, of 𝐷 and 𝑌 (Figure 8.5a).

Even if the common cause is unobserved, it suffices that we

have a proxy control variable that controls all the informa-

tion flow to either the treatment (complete treatment proxy;

Figure 8.5b) or to the outcome (complete outcome proxy; Fig-

ure 8.5c). Controlling for such a proxy also blocks the backdoor

path 𝐷 ← 𝑈 → 𝑌. Of course, the proxy blocking the backdoor

path only holds if the proxy variable captures all the information

flow from the unobserved confounder. If, for instance, there are

also direct paths from the unobserved variable to the treatment

(in the case of a treatment proxy), then controlling for a proxy

does not remove confounding bias. In this case, we will see

that one can follow more advanced approaches related to proxy

controls under additional structure in Chapter 12.
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𝑍

𝐷

𝑌

(a)

𝑍

𝑈

𝐷

𝑌

(b)

𝑈

𝑍

𝐷

𝑌

(c)

Figure 8.5: Good controls: (a) ob-

served common cause, (b) com-

plete treatment proxy control of un-

observed common cause, (c) com-

plete outcome proxy control of un-

observed common cause.

Example 8.3.1 (Effect of Multivitamin Consumption on Birth

Defects [6]) Suppose we want to estimate the effect of pre-

natal multivitamin consumption 𝐷 on birth defects 𝑌. One

factor that can potentially influence a mother’s decision on

multivitamin consumption is prior history of birth defects in

the family (𝑍); see e.g. [7]. Such prior history is possibly due

to unobserved genetic factors𝑈 that also have a direct effect

on the risk of malformation 𝑌; see e.g. [8]. In this case, family

medical history 𝑍 provides a complete treatment proxy of

the unobserved confounder (as in Figure 8.5b) as long as the

behavior of a mother is solely driven by the family medical

history. Controlling for medical history would thus remove

the confounding bias in this scenario.

Confounded mediators with observed common cause or prox-

ies of unobserved common cause. It is important to note that

confounding occurs even when there exists a common cause

𝑍 of the treatment 𝐷 and some mediator 𝑀 in a path from 𝐷

to 𝑌 (Figure 8.6a). In such cases, if we don’t condition on the

common cause of 𝐷 and 𝑀, there is an open backdoor path

𝐷 ← 𝑍 → 𝑀 → 𝑌. In such cases, 𝑍 is a good control as it

blocks this backdoor path. Similarly, if a common cause 𝑈 of

𝐷 and 𝑀 is unobserved, but some complete treatment proxy

control 𝑍 (Figure 8.6b) or some complete outcome proxy control

𝑍 (Figure 8.6c) is observed, then it suffices to adjust for this

proxy 𝑍.
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𝑍

𝑀

𝐷

𝑌

(a)

𝑍

𝑈

𝐷

𝑀

𝑌

(b)

𝑈

𝑍

𝑀

𝐷

𝑌

(c)

Figure 8.6: Good controls: (a) con-

founded mediator with observed

common cause, (b) confounded

mediator, with observed complete

treatment proxy control of unob-

served common cause, (c) con-

founded mediator with observed

complete outcome proxy control of

unobserved common cause.

Causes of only treatment or only outcome. As stated in Corol-

lary 8.2.4, a conservative empirical practice is to include the

union of parents of 𝐷 and 𝑌 in the adjustment set. Including

variables that are parents of the outcome (Figure 8.7a) can lead

to reduced variance during estimation as explained in Chapter

2 where we discuss including pre-treatment covariates in RCTs.

Including variables 𝑍 that affect the treatment 𝐷 but have no

causal path to the outcome (Figure 8.7b) is potentially more

controversial. Including these variables does not introduce

bias. However, their inclusion can be detrimental for precision,

as such variables can potentially explain away all of the use-

ful variation in the treatment, leaving little variation for the

identification of causal effects.

𝑍

𝐷

𝑌

(a)

𝑍

𝐷

𝑌

(b)

Figure 8.7: Neutral controls: (a)

Outcome-only cause. Can improve

precision; decrease variance. (b)

Treatment-only cause. Can de-

crease precision; introduce vari-

ance.

Even more importantly, when there are unobserved common

causes of 𝐷 and 𝑌 as illustrated in Figure 8.8, adjusting for

a treatment-only cause, 𝑍, can exacerbate the bias stemming

from unobserved confounding. Essentially, controlling for 𝑍

removes exogenous variation in the treatment𝐷 that is useful for

identifying the causal effect but leaves the confounded variation

- as 𝑍 is not related directly to the unobserved confounder𝑈 .

As such, the resulting estimated effect may be essentially driven

by the unobserved confounder and thus be heavily biased. For

this reason, one should avoid controlling for variables that are
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𝑈1

𝑈2

𝑍

𝐷

𝑌

Figure 8.9: Bad control. M-Bias.

Pre-treatment variable that intro-

duces Heckman selection bias

between two uncorrelated unob-

served causes.

known to have no causal path to the outcome that does not

pass through the treatment. As we will see in Chapter 12, such

variables are actually what are referred to as instruments. These

variables can be thought as useful natural experiments that

can be leveraged for causal identification even in the presence

of unobserved confounding. However, we will need to use

alternative identification arguments and estimation strategies

to make use of instruments. We introduced these instrumental
variable approaches in Chapter 12 and Chapter 13. Importantly,

instruments should not be used in an identification by adjustment

strategy.

𝑈

𝑍 𝐷 𝑌

Figure 8.8: Bad control. Bias ampli-

fication by adjusting for an instru-
ment. Treatment-only cause (instru-
ment) that can amplify unobserved

confounding bias.

M-bias The DAG in Figure 8.9, typically referred to in the

literature as the M structure, is the source of much debate;

see e.g. [9, 10]. If such cases were impossible, the high-level

strategy of controlling for all pre-treatment variables when

attempting to identify causal effects by conditioning would

be an unambiguously safe empirical route resulting in no

harm other than potentially increasing variance by including

an instrument. However, this structure shows that there exist

settings where adjusting for a pre-treatment covariate𝑍 can lead

to a wrong causal effect, while not adjusting for 𝑍 would have

yielded the correct causal effect. A better high-level strategy is

the one highlighted in the prior sections: If we are willing to

assume that identification by conditioning is possible, then we

should adjust only for pre-treatment variables that are either an

ancestor of the treatment, of the outcome, or of both treatment

and outcome.

More concretely, in the M structure graph (Figure 8.9), 𝐷 and

𝑌 are driven by two independent unobserved causal factors

𝑈1, 𝑈2. The variable 𝑍 is a common outcome of these two un-

observed causal factors. When conditioning on 𝑍, we introduce

collider bias between𝑈1, 𝑈2, making them correlated factors.

Conditioning on 𝑍 can thus lead to a causal effect estimate that

is solely driven by this spurious correlation between𝑈1 and𝑈2,

introduced by the collider bias. In graphical terms, adjusting

for 𝑍 closes the path 𝐷 ← 𝑈1 → 𝑍← 𝑈2 → 𝑌(𝑑) in the SWIG

DAG G̃(𝑑) produced by the fix(𝐷 = 𝑑) operation. However,
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there is no open path connecting 𝐷 to 𝑌(𝑑) when we do not

condition on 𝑍. Hence, the effect identified by not adjusting

for any variable is the correct causal effect within this example

structure.

Example 8.3.2 (Homophily bias in estimating peer effects) A

classical example where M-bias arises in empirical work in

social sciences is in the estimation of peer effects on social

networks [11, 12]. As a concrete example, suppose that we

want to understand the spread of civic engagement among

friends. Suppose that we look at data that consist of friendship

pairs and let 𝐷 be the level of civic engagement level of one

friend at time 𝑡 and 𝑌 the level of civic engagement of the

other friend at time 𝑡 + 1. Note that when we are estimating

the correlation of these two variables, we are implicitly con-

ditioning on the friendship variable 𝑍, since we only have

data from friendship pairs. Due to homophily Homophily refers to the tendency

of associate with similar individ-

uals - i.e. similar people tend to

become friends.

, friendship

could be driven by the unobserved intrinsic characteristics

of each of the two individuals (𝑈1 and 𝑈2 in Figure 8.9). It

is reasonable to assume that these characteristics are inde-

pendent as they are determined well before any friendship

is formed. Moreover, these qualitative characteristics (e.g.

levels of altruism) could very well have a direct effect on each

individual’s civic engagement. Thus, the estimation of peer

effects can be heavily biased due to exactly M-bias.

Finally, note that the M-bias argument is very sensitive to the

exact independence of the unobserved factors𝑈1, 𝑈2. In most

empirical applications, we expect these unobserved factors that

drive the treatment and outcome of interest to be correlated

with each other as in Figure 8.10a. In this case, note that even if

we don’t adjust for 𝑍, the calculated effect is biased due to the

backdoor path 𝐷 ← 𝑈1 → 𝑈2 → 𝑌. Thus, neither adjusting

nor not adjusting for 𝑍 gives the correct answer.

Moreover, it is not clear whether adjusting for 𝑍 increases

or decreases the correlation between 𝑈1 and 𝑈2 and hence

exacerbates or ameliorates the confounding bias. Similarly, if

𝑍 itself has a direct effect on the outcome (as in Figure 8.10b),

on the treatment, or on both (as in Figure 8.10c), then not

adjusting for 𝑍 opens the backdoor paths 𝐷 ← 𝑈1 → 𝑍→ 𝑌

and 𝐷 ← 𝑍 → 𝑌, correspondingly. Hence, it is not clear that

removing the bias induced by these open backdoor paths, by

adjusting for𝑍, is more beneficial than the extra M-bias incurred

by closing the path 𝐷 ← 𝑈1 → 𝑍← 𝑈2 → 𝑌. Work of [9, 13]

argues that M-bias in many realistic data generating processes

is of lower order than confounding bias and therefore argues
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that one should err on the side of adjusting for pre-treatment

covariates even in the potential presence of M-bias. [10] provides

a counterpoint, arguing that the strength of the different biases

will differ in general and thus careful consideration of the

strength of each of the causal paths at play should be done on a

case-by-case basis.

𝑈1

𝑈2

𝑍

𝐷

𝑌

(a)

𝑈1

𝑈2

𝑍

𝐷

𝑌

(b)

𝑈1

𝑈2

𝑍

𝐷

𝑌

(c)

Figure 8.10: No perfect control solu-

tions: (a) M-bias with correlated un-

observed factors. (b) M-Bias with

confounding. Pre-treatment vari-

able that introduces Heckman se-

lection between two uncorrelated

unobserved causes and is a con-

founder itself. (c) Butterfly Bias. M-

bias with direct confounding.

Post-Treatment Variables

Now we turn to adjustment for post-treatment variables. The

general message of this section is that explicitly adjusting for

post-treatment variables is almost always a bad idea. Impor-

tantly, the general message implies that researchers should be

careful to avoid implicitly adjusting for post-treatment variables

through the way they have structured their observational anal-

ysis, data collection, and variable definitions – see e.g. [6] for

examples from epidemiology. For instance, when estimating the

effect of education on wages using data on employed individuals,

we are implicitly conditioning on "employment" which is a

post-treatment variable and can lead to selection bias.

Mediation. A common way a post-treatment variable can lead

to bias in identifying the full causal effect of𝐷 on𝑌 is if it lies on

a causal path from the treatment to the outcome (Figure 8.11a).

In this case, the causal influence that flows through that path

is blocked and we are only measuring a partial effect. It is

important to note, that the causal influence of such a path can

be partially blocked even if one conditions on a descendant of

the mediator (Figure 8.11b).
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𝑀

𝑍

𝐷 𝑌

Figure 8.12: Neutral control. Cause

of a mediator. Can potentially im-

prove precision.

𝑍

𝑈

𝐷 𝑌

Figure 8.13: Bad control even for

the controlled direct effect. Con-

founded mediator bias.

𝑍𝐷 𝑌

(a)

𝑀

𝑍

𝐷 𝑌

(b)

Figure 8.11: Bad controls for learn-

ing the full direct effect of 𝐷 on

𝑌: (a) over-control bias, by control-

ling for a mediator. (b) over-control

bias, by controlling for an outcome

caused by a mediator.

Interestingly, controlling for an ancestor of a mediator (Fig-

ure 8.12) does not impede us from learning the full direct

effect of 𝐷 on 𝑌. In this case, the flow through the causal path

𝐷 → 𝑀 → 𝑌 is not blocked by𝑍. For example, d-separation can

be easily checked in the SWIG G̃(𝑑) produced by fix(𝐷 = 𝑑).

When we are controlling for a post-treatment variable that

mediates the effect of the treatment as in Figure 8.11a, we are

only capturing direct effects from the treatment to the outcome

that do not work through this mediator. This type of direct

effect after controlling for mediators is typically referred to as a

controlled direct effect. Identifying the controlled direct effect is

many times a relevant empirical question, in which case con-

trolling for 𝑍 is not problematic. However, even when we are

interested in the controlled direct effect, we should pay atten-

tion to cases where the mediators are themselves confounded

through unobserved factors as illustrated in Figure 8.13. In

such settings, by controlling for the mediator, we are opening a

collider path 𝐷 → 𝑍← 𝑈 → 𝑌 which can lead to severe bias,

such as calculating non-zero direct effects even when they are

zero.

Heckman selection bias Another common way that post-

treatment variables can lead to bias is due to collider bias or

Heckman selection, as described in Section 6.3. In this case,

conditioning on the post-treatment variable introduces spu-

rious correlations between the treatment variable and some

other variable which opens new paths of non-causal influence

from the treatment to the outcome. For instance, Figure 8.14a

corresponds to the low birthweight paradox we presented in

Example 6.3.2. Similarly, Figure 8.14b corresponds to the Hol-

lywood Example Example, Example 6.3.1. Finally, Figure 8.14c

arises when we are controlling for an outcome of the outcome

as might be produced by recall bias in a case-control study.
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𝐷

𝑍 𝑌

𝑈

(a)

𝑍

𝐷

𝑌

(b)

𝑍𝐷 𝑌

(c)

Figure 8.14: Bad controls: (a) col-

lider stratification bias (e.g. low

birth-weight "paradox" example),

(b) collider stratification bias, (c)

controlling for an outcome of the

outcome of interest.

Example 8.3.3 (The Industrial Growth Puzzle [14]) In a study

conducted during the nineteenth century in the US and

Britain, it was found that despite nutrition quality 𝐷 having

improved, the height of men 𝑌 decreased. One possible

explanation of the results of this study is that the subjects

of the study were people who were enlisted in the army or

in prison. Both of these variables, enlisted in the army and

being in prison, are plausibly determined after the outcome

variable of height is realized. It might, for example, be that

taller men had more civilian opportunities growing up and

did not end up enlisting in the army. In this case, looking at a

sample of enlistees is implicitly controlling for an outcome of

the outcome of interest which could lead to a biased estimate

of the effect of nutrition on height.

There are of course some edge cases where controlling for a

post-treatment variable 𝑍 does not lead to selection bias – e.g.

Figure 8.15a and Figure 8.15b. In each of these two cases, the

post-treatment variable is not a collider on a path from 𝐷 to

𝑌. However, it is not clear that adjusting for 𝑍 improves the

analysis in any respect even in these cases, and adjusting for 𝑍

could potentially hurt precision.

𝑍

𝐷 𝑌

(a)

𝐷

𝑍

𝑊 𝑌

𝑈

(b)

Figure 8.15: Neutral controls: (a)

outcome of the treatment that is

unrelated to the outcome of inter-

est, (b) outcome of the treatment

that does not introduce Heckman

selection.
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Notes

Any empirical study that tries to learn the causal effect of

𝐷 on 𝑌 by conditioning on 𝑆 must have a thought process

that justifies this approach. The DAG/ASEM framework is

a rigorous representation of such a thought process which

enables explicit incorporation of domain knowledge, automatic

checking of identifiability, and automatic deduction of testable

restrictions. Graphs also provide an effective way of visualizing

and communicating models.

Notebooks

▶ R: Dagitty Notebook employs the R package "dagitty" to

analyze some simple DAGs as well as Pearl’s Example.

This package automatically finds adjustment sets and

also lists testable restrictions in a DAG. Python: Pgmpy

Notebook employs the analogue with Python package

"pgmpy" and conducts the same analysis.

Study Problems

The study problems ask learners to continue the analysis of

Pearl’s Example DAG that we started in the Study Problems to

Chapter 7. The provided notebooks are a useful starting point.

Recall that Pearl’s Example is structured as follows:

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 8.16: Pearl’s Example

1. For Pearl’s Example, write out the parents, non-parents,

descendants, and non-descendants of nodes 𝑋2 and 𝑀.

List all the backdoor paths between 𝑌 and 𝑋2. Can you

identify the effect of 𝑋2 on 𝑌 by conditioning?

2. (Front-Door-Criterion) For Pearl’s Example, show that

we can identify the effect 𝐷 → 𝑀 by conditioning on

an empty set and the effect 𝑀 → 𝑌 by conditioning on

𝐷. Combining the two results, we can identify the total

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb


8 Valid Adjustment Sets from DAGs 211

effect of 𝐷 on 𝑌. Solving this exercise analytically is a

nice exercise; you can compare your results against causal

identification packages. (Identification via this strategy is

known as the Front-Door criterion; see Appendix 8.A.

3. Add an arrow 𝑍2 → 𝑍1 in Pearl’s Example and figure out

how to identify the effect of 𝐷 → 𝑌 by conditioning, of

𝐷 → 𝑀 by conditioning, and of 𝑀 → 𝑌 by conditioning.

(Note that valid conditioning sets may be empty.) Can you

identify the effect of 𝑋2 → 𝑌? If so, how? You may solve

this analytically or using a causal identification package.

4. Add an arrow 𝑋1 → 𝑀 in Pearl’s Example and figure out

how to identify the effect of 𝐷 → 𝑌 by conditioning, of

𝐷 → 𝑀 by conditioning, and of 𝑀 → 𝑌 by conditioning.

Can you identify the effect of 𝑋2 → 𝑌? If so, how? You

may solve this analytically or using a causal identification

package.

5. Try to ask an instruction-following LLM (such as Chat-

GPT) about identification and valid adjustment sets, both

for the original Pearl’s Example as well as the variations in

the latter two problems. Can you verify or find mistakes

in the response? If you find mistakes, how might they be

corrected? When mistakes are pointed out to the LLM, is

it able to correct them? For example, you can try starting

with the following prompt and make variations on it: “I

have a causal graph with nodes Z1, Z2, X1, X2, X3, D,

M, Y and edges Z1->X1, Z1->X2, Z2->X2, Z2->X3, X1->D,

X2->D, X2->Y, X3->Y, D->M, M->Y. Is the effect of D on Y

identified? What are the valid adjustment sets?"

8.A Front-Door Criterion via Example

We examine identification in Pearl’s Example (Figure 8.2), via

the front-door criterion. First note that we can write the potential

outcome of interest 𝑌(𝑑) as 𝑌(𝑀(𝑑)), since in the SWIG �̃�(𝑑)
there is no other path from 𝑑 to𝑌(𝑑) other than through𝑀(𝑑).

E[𝑌(𝑑)] = E[𝑌(𝑀(𝑑))]

=

∫
E[𝑌(𝑀(𝑑)) | 𝑀(𝑑) = 𝑚]P(𝑀(𝑑) = 𝑚)𝑑𝑚

=

∫
E[𝑌(𝑚) | 𝑀(𝑑) = 𝑚]P(𝑀(𝑑) = 𝑚)𝑑𝑚
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4: See Exercise 2.

5: Prove this as a reading exercise.

Suppose that we make a further surgery to the SWIG graph

in Figure 8.3 by adding an intervention on the variable 𝑀(𝑑),
i.e. take the modified SWIG graph induced by intervention

fix(𝐷 = 𝑑) and on that graph make a further intervention

fix(𝑀(𝑑) = 𝑚). This leads to the new SWIG:

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷 𝑑

𝑀(𝑑)
𝑚

𝑌(𝑚)

Figure 8.17: The DAG induced by

a recursive Fix/SWIG intervention

fix(𝑀(𝑑) = 𝑚) on the SWIG in Fig-

ure 8.3.

Note that in this SWIG, we have𝑌(𝑚) ⊥⊥ 𝑀(𝑑). Thus we have:

E[𝑌(𝑚) | 𝑀(𝑑) = 𝑚] = E[𝑌(𝑚)],

leading to the front-door formula:

E[𝑌(𝑑)] =
∫

E[𝑌(𝑚)]P(𝑀(𝑑) = 𝑚)𝑑𝑚

The term E[𝑌(𝑚)] is the mean counterfactual response of 𝑌

when we intervene on 𝑀 and P(𝑀(𝑑) = 𝑚) is the probability

law of the counterfactual response of 𝑀 when we intervene

on 𝐷. Both of these interventional quantities can be separately

identified via backdoor adjustment. More concretely, E[𝑌(𝑚)] =
E[E[𝑌 | 𝑀 = 𝑚, 𝐷]], and P(𝑀(𝑑) = 𝑚) = P(𝑀 = 𝑚 | 𝐷 = 𝑑).4
Note that under linearity assumptions on the CEFs – i.e. E[𝑌 |
𝑀 = 𝑚, 𝐷] = 𝛼𝑚 + 𝛽𝐷 + 𝑐 and E[𝑀 | 𝐷 = 𝑑] = 𝛾𝑑 + 𝛿 – we

get E[𝑌(1) − 𝑌(0)] = 𝛼𝛾.
5

Thus, the average treatment effect

𝛼𝛾, can be estimated by estimating 𝛼 via OLS of 𝑌 on 𝑀, 𝐷

and 𝛾 via OLS of 𝑀 on 𝐷.



Bibliography

[1] Jeffrey M Wooldridge. ‘Violating ignorability of treatment

by controlling for too many factors’. In: Econometric Theory
21.5 (2005), pp. 1026–1028 (cited on page 194).

[2] Thomas S. Richardson and James M. Robins. Single world
intervention graphs (SWIGs): A unification of the counterfac-
tual and graphical approaches to causality. Working Paper

No. 128, Center for the Statistics and the Social Sciences,

University of Washington. 2013. url: https://csss.uw.

edu/files/working-papers/2013/wp128.pdf (cited

on page 196).

[3] Tyler J. VanderWeele and Ilya Shpitser. ‘A new crite-

rion for confounder selection’. In: Biometrics 67.4 (2011),

pp. 1406–1413 (cited on pages 197, 198, 200).

[4] Judea Pearl. Causality. Cambridge University Press, 2009

(cited on page 199).

[5] Carlos Cinelli, Andrew Forney, and Judea Pearl. ‘A Crash

Course in Good and Bad Controls’. In: Sociological Methods
& Research (2022) (cited on page 201).

[6] Miguel A Hernán, Sonia Hernández-Díaz, Martha M

Werler, and Allen A Mitchell. ‘Causal knowledge as a

prerequisite for confounding evaluation: an application

to birth defects epidemiology’. In: American Journal of
Epidemiology 155.2 (2002), pp. 176–184 (cited on pages 203,

207).

[7] A Pastuszak, D Bhatia, B Okotore, and G Koren. ‘Precon-

ception counseling and women’s compliance with folic

acid supplementation.’ In: Canadian Family Physician 45

(1999), p. 2053 (cited on page 203).

[8] Rolv Terje Lie, Allen J Wilcox, and Rolv Skjærven. ‘A

population-based study of the risk of recurrence of birth

defects’. In: New England Journal of Medicine 331.1 (1994),

pp. 1–4 (cited on page 203).

[9] Peng Ding and Luke W. Miratrix. ‘To Adjust or Not to

Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias’.

In: Journal of Causal Inference 3.1 (2015), pp. 41–57 (cited

on pages 205, 206).

https://csss.uw.edu/files/working-papers/2013/wp128.pdf
https://csss.uw.edu/files/working-papers/2013/wp128.pdf


Bibliography 214

[10] Judea Pearl. ‘Comment on Ding and Miratrix: “To Adjust

or Not to Adjust?”’ In: Journal of Causal Inference 3.1 (2015),

pp. 59–60. doi: doi:10.1515/jci-2015-0004 (cited on

pages 205, 207).

[11] Cosma Rohilla Shalizi and Andrew C Thomas. ‘Ho-

mophily and contagion are generically confounded in

observational social network studies’. In: Sociological Meth-
ods & Research 40.2 (2011), pp. 211–239 (cited on page 206).

[12] Felix Elwert and Christopher Winship. ‘Endogenous se-

lection bias: The problem of conditioning on a collider

variable’. In: Annual Review of Sociology 40 (2014), pp. 31–

53 (cited on page 206).

[13] Wei Liu, M Alan Brookhart, Sebastian Schneeweiss, Xiao-

juan Mi, and Soko Setoguchi. ‘Implications of M bias in

epidemiologic studies: a simulation study’. In: American
Journal of Epidemiology 176.10 (2012), pp. 938–948 (cited

on page 206).

[14] Eric B Schneider. ‘Collider bias in economic history re-

search’. In: Explorations in Economic History 78 (2020),

p. 101356 (cited on page 209).

https://doi.org/doi:10.1515/jci-2015-0004

