
Applied Causal Inference Powered by
ML and AI

Victor Chernozhukov
∗

Christian Hansen
†

Nathan Kallus
‡

Martin Spindler
§

Vasilis Syrgkanis
¶

February 28, 2024

Publisher: Online

Version 0.1.1

∗
MIT

†
Chicago Booth

‡
Cornell University

§
Hamburg University

¶
Stanford University

Predictive Inference via Modern

Nonlinear Regression 9

9.1 Introduction 216

9.2 Regression Trees and Ran-

dom Forests 216

Introduction to Regression

Trees 216

Random Forests 220

Boosted Trees 221

9.3 Neural Nets / Deep Learn-

ing 223

Basic Ideas 223

Deep Neural Networks 227

9.4 Prediction Quality of

Modern Nonlinear Regression

Methods 230

Learning Guarantees of

DNNs 230

Learning Guarantees of

Trees and Forests 232

Trust but Verify 235

A Simple Case Study using

Wage Data 236

9.5 Combining Predictions - Ag-

gregation - Ensemble Learn-

ing 237

Auto ML Frameworks 239

9.6 When Do Neural Networks

Win? 239

9.7 Closing Notes 240

9.A Variable Importance via Per-

mutations 242

"Nowhere is it written on a stone tablet what kind of

model should be used to solve problems involving

data."

– Leo Breiman [1].

Here we discuss nonlinear regression methods based on tree

models and (deep) neural network models. Tree-based methods

include regression trees, random forests, and boosted trees.

Regression trees are great for exploration and explainable

analytics, while random forests and boosted trees are great

predictive tools for structured data and data sets of intermediate

size (say, up to several million observations). Neural networks

are extremely flexible nonlinear regression methods and are

particularly successful for data sets of larger size.

9 Predictive Inference via Modern Nonlinear Regression 216

9.1 Introduction

We are interested in predicting an outcome 𝑌 using raw regres-

sors 𝑍, which are 𝑘-dimensional. The best prediction rule 𝑔(𝑍)
under square loss is the conditional expectation function (CEF)

of 𝑌 given 𝑍:

𝑔(𝑍) = E(𝑌 | 𝑍).

In previous chapters, we used best linear prediction rules to

approximate 𝑔(𝑍) and linear regression or Lasso regression

for estimation. Now we consider nonlinear prediction rules to

approximate 𝑔(𝑍), focusing on tree-based methods and neural

networks.

The use of best prediction rules (CEFs) is not just important for

generating good predictions but is crucial for causal inference.

Identification of causal parameters such as ATEs via condi-

tioning strategies requires us to work with CEFs rather than

with best linear prediction rules. Previously we tried to make

best linear prediction rules flexible to try to approximate best

prediction rules. Here we explore fully nonlinear strategies.

9.2 Regression Trees and Random Forests

Introduction to Regression Trees

Regression trees are based on partitioning the regressor space

(the space where 𝑍 takes on values) into a set of rectangles. A

simple model is then fit within each rectangle.

The most common approach fits a simple constant model within

each rectangle, which corresponds to approximating the un-

known function by a "step function." Given a partition into 𝑀

regions, denoted 𝑅1, . . . , 𝑅𝑀 the approximating function when

a constant is fit within each rectangle is given by

𝑓 (𝑧) =
𝑀∑
𝑚=1

𝛽𝑚1(𝑧 ∈ 𝑅𝑚),

where 𝛽𝑚 , 𝑚 = 1, . . . , 𝑀 denotes a constant for each region and

1(·) denotes the indicator function.

Suppose we have 𝑛 observations (𝑍𝑖 , 𝑌𝑖) for 𝑖 = 1, . . . , 𝑛. The

estimated coefficients for a given partition are obtained by

9 Predictive Inference via Modern Nonlinear Regression 217

minimizing the in-sample MSE:

�̂� = arg min

𝑏1 ,...,𝑏𝑀
𝔼𝑛

(
𝑌 −

𝑀∑
𝑚=1

𝑏𝑚1(𝑍 ∈ 𝑅𝑚)
)

2

,

which results in

�̂�𝑚 = average of 𝑌𝑖 where 𝑍𝑖 ∈ 𝑅𝑚 .

The regions 𝑅1, . . . , 𝑅𝑀 are called nodes, and each node 𝑅𝑚
has a predicted value �̂�𝑚 associated with it.

A nice feature of regression trees is that you get to draw cool

pictures, so let’s explore their usage graphically in the context

of our wage example. In this example, the outcome variable 𝑌

is (log) hourly wage; and 𝑍 includes experience, geographic,

and educational characteristics.

Figure 9.1 illustrates a simple regression tree for the wage data.

This tree has a depth of two, meaning that predictions are

produced as a sequence of two binary decisions (or partitions

of the data). Starting at the top of the tree and working down

provides a simple prediction rule for any observation. For

example, the predicted wage for a worker without a college

degree (college = 0) and with less than 14 years of experience

(exper < 14) is 12 dollars an hour. We obtain this prediction

by starting at the top of the tree and taking the left branch

because college = 0 < .5. We then go left again at the second

step because exper < 14 and arrive at the predicted value of

12.

college < 0.5

exper < 14 exper < 9.5

12 14 17 24

yes no

Figure 9.1: Regression tree based

on wage data. The bottom nodes on

the tree provide prediction rules for

different subsets of observations.

For example, the predicted hourly

wage for a college educated worker

with 9.5 or more years of experience

(a worker with college = 1 and

exper ≥ 9.5) is 24 dollars.

The key feature of trees is that the cut points for the partitions

are adaptively chosen based on the data. That is, the splits are

not pre-specified but are purely data dependent. So, how did

we use the data to grow the tree in Figure 9.1?

To make computation tractable, we use recursive binary parti-

tioning or splitting of the regressor space:

9 Predictive Inference via Modern Nonlinear Regression 218

1: To be clear, note that, in prin-

ciple, finding this split point re-

quires trying the partition pro-

duced by splitting the data along

every possible value of every ob-

served variable. That is, we are nei-

ther pre-specifying which variables

nor which split points are impor-

tant in providing a good prediction

rule.

college < 0.5

13 20

yes no

Figure 9.2: Depth 1 tree in the wage

example

college < 0.5

exper < 14 exper < 9.5

12 14 17 24

yes no

Figure 9.3: Depth 2 tree in the wage

example

2: One practical choice of the depth

of a tree is to stop just before we get

a headache from looking at a com-

plicated tree. This rule is indeed

useful if we want to present the

tree as a communication device.

▶ Growing the Tree: Level 1. First, we cut the regressor

space into two regions by choosing the regressor and

splitting point such that using the prediction rule fit

within each region produces the best improvement in the

in-sample MSE.
1

Applying this procedure in the wage data gives us the

depth 1 tree shown Figure 9.2. In this case, the best regres-

sor to split on is the indicator of college degree, that takes

values 0 or 1. Here splitting at any point between 0 and

1 provides the same rule, and an often used convention

for binary variables is to use the "natural" split point of .5.

Applying this split point yields the initial prediction rule:

an hourly wage of $20 for college graduates and $13 for

others.

▶ Growing the Tree: Level 2. To grow the tree to depth

2, we then repeat the procedure for choosing the first

partition rule within the two regions resulting from the

first step. This step will result in a partition of the covari-

ate space into four new regions. It is important to note

that the two splits produced at this point may use differ-

ent variables/splitting points than before. This feature

means that the tree algorithm can create "interactions"

and "nonlinearities" without requiring input from the

user.

In our example, the regions resulting from applying the

first splitting rule correspond to college graduates and

non-college graduates). For college graduates, the parti-

tioning rule that minimizes in-sample MSE is to split this

group into those with less than 9.5 years of experience

and those with 9.5 years or more of experience. We have

thus refined the prediction rule for graduates to be $24

an hour if experience is greater than or equal to 9.5 years,

and $17 an hour otherwise. For non-graduates the pro-

cedure works similarly, though here the in-sample MSE

minimizing split is produced by dividing non-graduates

into those with less than 14 years of experience and those

with 14 years of experience or more.

▶ Growing the Tree: Higher Levels and Stopping Rule.

To grow deeper trees corresponding to more complex

prediction rules, we simply keep repeating. We stop when

the desired depth of the tree is reached,
2

or when a

prespecified minimal number of observations per region,

called minimal node size, is reached.

In the wage example, we can grow a depth 3 tree by

9 Predictive Inference via Modern Nonlinear Regression 219

Figure 9.5: "To prune a tree." Source:

Wikipedia

repeating the basic procedure within each of the four

nodes of the depth 2 tree. The resulting tree is illustrated

in Figure 9.4. Here, we see that the indicator for self-

reported sex (female), high-school graduate indicator

(hsg), and Southern region indicator (so) are the splitting

variables chosen in the third level.

college < 0.5

exper < 14

female >= 0.5 hsg >= 0.5

exper < 9.5

female >= 0.5 so < 0.5

11 13 13 15 16 18 23 27

yes no

Figure 9.4: Depth 3 tree in the wage

example. The depth of three was

chosen to avoid getting headaches

from looking at a more complicated

tree.

Pruning Regression Trees. We now make several observa-

tions.

First, the deeper we grow the tree, the better is our approxi-

mation to the regression function 𝑔(𝑍). However, the deeper

the tree, the noisier our estimate �̂�(𝑍) becomes, since there are

fewer observations per terminal node to estimate the predicted

value for this node. From a prediction point of view, we can

try to find the right depth or the structure of the tree by a

validation exercise such as using a single train/test split or

cross-validation. For example, in the wage example, the tree

of depth 2 performs better in terms of cross-validated MSE

than the tree of depth 3 or 1. The process of cutting down the

branches of the tree to improve predictive performance is called

"Pruning the Tree."

Often for business analytics and explainability, simple trees

like the ones shown are used. If we only care about building

good prediction rules, we may build complicated trees and

apply pruning to improve predictive performance. A simple

penalty for the complexity of the tree is the number of leaves

(terminal nodes) times a penalty level, where the penalty level

is chosen heuristically; see, e.g, [2]. For example, we can always

use a train/test split or cross-validation to settle on a penalty

level. There is not a rigorously justified plug-in penalty level

for trees like there is for Lasso. Figuring out such a plug-in rule

is actually a good research problem.

9 Predictive Inference via Modern Nonlinear Regression 220

Figure 9.6: Approximation of

𝑔(𝑍) = exp(4𝑍) by a shallow re-

gression tree in the noiseless case.

Figure 9.7: Approximation of

𝑔(𝑍) = exp(4𝑍) by a deep regres-

sion tree in the noiseless case.

3: bootstrap sample: typically a sam-

ple of the same or similar size to

the size of the original dataset pro-

duced by sampling uniformly from

the original data with replacement.

Other sampling schemes may also

be used, e.g. to accommodate de-

pendence.

4: subsample: typically a sample of

size much smaller than the origi-

nal dataset produced by sampling

uniformly from the original data

without replacement. Other sam-

pling schemes may also be used,

e.g. to accomodate dependence.

Random Forests

In practice, regression trees often do not provide the best pre-

dictive performance, because a single regression tree provides

a relatively crude approximation to a smooth regression func-

tion g(Z). We illustrate the potential poor approximation of

regression trees in Figures 9.6 and 9.7. These figures simply

illustrate that step functions, which are the outputs of typical

regression tree implementations, struggle in approximating

smooth functions.

A powerful and widely used approach that aims to improve

upon simple regression trees is to build a random forest, as

proposed by Leo Breiman [3]. The idea of a random forest is to

grow many different deep trees that have low approximation

error and then average the prediction rules across trees.

To produce different trees using only the observed data, the

trees going into a random forest are grown from artificial data

generated by sampling randomly with replacement from the

original data; that is, each tree in a random forest is fit to a

bootstrap sample.3 Within the bootstrap samples, trees are grown

deep to keep approximation error low. Averaging across the

trees produced in the bootstrap samples is then meant to reduce

the noisiness of the individual trees. The procedure of averaging

noisy prediction rules over bootstrap samples is called Bootstrap

Aggregation or Bagging. When the data set is large, we can

also rely on fitting trees within subsamples4
instead of using

the bootstrap. Using subsamples offers some computational

advantages and also simplifies theoretical analysis.

The idea seems very unusual, so let us explain again.

Each bootstrap sample is created by sampling from our data

on pairs (𝑌𝑖 , 𝑍𝑖) randomly, with replacement. Hence, some

observations are drawn multiple times and some aren’t

redrawn at all. Given a bootstrap sample, indexed by 𝑏,

we build a tree-based prediction rule �̂�𝑏(𝑍). We repeat the

procedure 𝐵 times in total, and then average the prediction

rules that result from each of the bootstrap samples:

�̂�random forest(𝑍) =
1

𝐵

𝐵∑
𝑏=1

�̂�𝑏(𝑍).

The use of the bootstrap here is unusual, yet corresponds to an

intuitive idea: If we could have many independent copies of

9 Predictive Inference via Modern Nonlinear Regression 221

Figure 9.8: Approximation of

𝑔(𝑍) = exp(4𝑍) by a random forest

in the noiseless case.

5: residuals: the unexplained part of

an outcome we want to predict, af-

ter subtracting the prediction from

the observed outcome.

the data, we could obtain low-bias but potentially very noisy

prediction rules in each copy of the data and then average

the prediction rules obtained over these copies to reduce the

noise. Since we don’t have many copies in reality, we rely on

the bootstrap to create many quasi-copies of the data. Another

feature of this idea is that the cut-points defining partitions for

the tree obtained within each bootstrap sample will be different,

producing a different step function approximation. Averaging

over many step functions with steps at different locations will

potentially produce a much smoother approximation to the

underlying function. The improved approximation relative to

simple trees is illustrated in Figure 9.8.

There are many modifications of the simple version of boot-

strap aggregation that we have discussed. The most important

modification is the use of additional randomization to "decor-

relate" the trees: When we build trees over different bootstrap

samples, we also randomize over the variables that trees are

allowed to use in forming partitions. This additional layer of

randomization encourages trees in different bootstrap samples

to have different structure throughout the tree – both near the

top and at the bottom – by forcing consideration of distinct sets

of variables.

In summary, a random forest is an average of tree based pre-

diction rules (a forest) produced from bootstrap or subsample

data (generated randomly).

Boosted Trees

The idea of boosting is that of recursive fitting: We estimate a

simple prediction rule, then take the residuals5
and estimate

another simple prediction rule for these residuals. We then

take the residuals produced from this new prediction rules

and build yet another simple model to predict them. We keep

repeating this process until we reach some stopping criterion.

The sum of these prediction rules fitted at each step then gives

us the overall prediction rule for the outcome.

Boosting can be applied with any type of base prediction rule.

A common use of boosting is with regression trees which

leads to boosted trees. Boosted trees are built up using shallow

trees as the simple prediction rule. Shallow trees are trees

with very few levels of depth. By keeping depth low, shallow

trees produce low noise prediction rules. However, shallow

trees also tend to have high approximation error because they

rely on step functions with very few steps to approximate the

9 Predictive Inference via Modern Nonlinear Regression 222

Figure 9.9: Approximation of

𝑔(𝑍) = exp(4𝑍) by boosted trees

in the noiseless case with a suffi-

cient number of steps 𝐽.

6: We need 0 < � < 1, and a com-

mon default value for � is 0.1. The

idea of boosting is to fit simple pre-

diction rules, so one will typically

specify the prediction rule by set-

ting the depth of the trees to a small

number. For example, at each step,

the prediction rule may be a regres-

sion tree of depth one (so-called

stumps) or depth two. Typically,

one will try several small values

for depth and again choose among

them by cross-validation.

target regression function. That is, a single shallow regression

tree tends to produce a high bias, low variance prediction rule.

Boosting then helps alleviate the bias of shallow regression trees.

At each step, fitting a model to the residuals from the previous

step reduces the approximation error from the previous step.

The improved approximation of boosted trees relative to simple

trees is illustrated in Figure 9.9.

The boosting algorithm

1. Initialize the residuals: 𝑅𝑖 := 𝑌𝑖 , 𝑖 = 1, ..., 𝑛.

2. For 𝑗 = 1, ..., 𝐽

a) fit a tree-based prediction rule �̂�𝑗(𝑍) to the data

(𝑍𝑖 , 𝑅𝑖)𝑛𝑖=1
;

b) update the residuals 𝑅𝑖 := 𝑅𝑖 − � �̂�𝑗(𝑍𝑖), where

� is called the learning rate.

3. Output the boosted prediction rule:

�̂�(𝑍) :=

𝐽∑
𝑗=1

� �̂�𝑗(𝑍).

In practice, using boosted trees requires making several choices.

One needs to define the tree-based prediction rule used at each

step and also choose the number of learning steps, 𝐽, and the

learning rate, �. These tuning parameters are typically chosen

by cross-validation.
6

Note that the boosting algorithm is quite general and can be

applied to non-tree uses. Note that the number of learning steps

for boosting is important across any implementation. Because

each step is building a model to predict the unexplained part of

the outcome from the previous step, the in-sample prediction

errors – the fit to the outcomes used to train the model – must

weakly increase with each additional step. If too many iterations

are taken, it is thus likely that overfitting will occur, but too

few iterations may leave significant bias in the final prediction

rule. In practice, the number of iterations is typically chosen by

stopping the procedure once there is no marginal improvement

to cross-validated MSE. A very popular implementation widely

used in industry is xgboost, which has the capability to impose

qualitative shape constraints like monotonicity in one or several

variables. Other frequently used implementations are lightgbm

and catboost.

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/v3.3.2/
https://catboost.ai/

9 Predictive Inference via Modern Nonlinear Regression 223

9.3 Neural Nets / Deep Learning

Neural networks are a very powerful tool for modelling non-

linear relationships. They rely on many constructed regressors

to approximate 𝑔(𝑍), the conditional expectation given the

regressors. The method and the name "neural networks" were

loosely inspired by the mode of operation of the human brain,

and developed by scientists working in Artificial Intelligence.

They can be represented by cool graphs and diagrams.

Basic Ideas

First, we focus on a single layer neural network to introduce the

more formal definition of neural nets. The estimated prediction

rule will take the form:

�̂�(𝑍) := �̂�′𝑋(�̂�) :=

𝑀∑
𝑚=1

�̂�𝑚𝑋𝑚(�̂�𝑚),

where the𝑋𝑚(�̂�𝑚)’s are constructed regressors called neurons,

𝛼 = (𝛼𝑚)𝑀𝑚=1
, 𝛽 = (𝛽𝑚)𝑀𝑚=1

, 𝑋(𝛼) = (𝑋𝑚(𝛼𝑚))𝑀𝑚=1
.

We always take 𝑍 to include a constant of 1 as a component and

set 𝑋1(𝛼) = 1. The remaining neurons are generated as

𝑋𝑚(𝛼𝑚) = 𝜎(𝛼′𝑚𝑍), 𝑚 = 2, . . . , 𝑀,

where 𝛼𝑚’s are neuron-specific vectors of parameters called

weights, and 𝜎 is an activation function chosen by the practi-

tioner. Popular activation functions are

▶ the sigmoid function,

𝜎(𝑣) = 1

1 + 𝑒−𝑣 ,

▶ the rectified linear unit function (ReLU),

𝜎(𝑣) = max(0, 𝑣),

▶ the smoothed rectified linear unit function (SReLU),

𝜎(𝑣) = log(1 + exp(𝑣)),

▶ the leaky rectified linear unit function (Leaky-ReLU),

𝜎(𝑣) = 𝛼𝑣1(𝑣 < 0) + 𝑣1(𝑣 ≥ 0)

9 Predictive Inference via Modern Nonlinear Regression 224

Figure 9.10: The sigmoid (logit) and

ReLU activation functions

7: In many implementations of

neural network training the ℓ2

penalty is referred to as the "weight

decay" parameter; inspired by the

fact that the ℓ2 penalty adds an extra

−2�𝑤 term in the gradient calcu-

lated at each gradient step of SGD

for each parameter 𝑤, with 𝑤 be-

ing the parameter’s current value.

Thus it always "decays" the param-

eter towards zero.

▶ or the linear function,

𝜎(𝑣) = 𝑣.

The use of nonlinear activation functions is critical for generating

high-quality approximations.

The estimators {�̂�𝑚} and {�̂�𝑚}, for 𝑚 = 1, ..., 𝑀, are obtained

as the solution to a penalized nonlinear least squares problem.

For example, we could obtain parameter estimates by solving

min

{𝛼𝑚},{𝛽𝑚}

∑
𝑖

(
𝑌𝑖 −

𝑀∑
𝑚=1

𝛽′𝑚𝑋𝑖𝑚(𝛼𝑚)
)

2

+ pen(𝛼, 𝛽;�), (9.3.1)

where pen(𝛼, 𝛽;�) is a penalty function with penalty parameter

�. Common penalty functions are lasso-type ℓ1 penalties,

�

(∑
𝑚

∑
𝑗

|𝛼𝑚𝑗 | +
∑
𝑚

|𝛽𝑚 |
)
,

and Ridge-type ℓ2 penalties,
7

�

(∑
𝑚

∑
𝑗

(𝛼𝑚𝑗)2 +
∑
𝑚

(𝛽𝑚)2
)
.

Neural network estimates are typically computed using stochas-

tic gradient descent (SGD) algorithms. In its simplest version,

SGD proceeds as follows: At each step, parameters are updated

9 Predictive Inference via Modern Nonlinear Regression 225

8: This is typically referred to as

the direction of steepest descent

9: These details are outside of the

scope of this monograph. Inter-

ested readers might refer to Deep
Learning by Goodfellow, Bengio,

and Courville [4] for a textbook

treatment of these issues. A popu-

lar method for training neural net-

works is called Adam; see this To-

wards Data Science blog for a de-

tailed explanation [5].

based on the update formula

(𝛼, 𝛽) ← (𝛼, 𝛽) − �𝜕𝛼,𝛽 Loss(𝐵; 𝛼, 𝛽)

where 𝐵 ⊂ {1, . . . , 𝑛} is a subset of the samples and the loss

is the penalized non-linear least squares objective in Equa-

tion (9.3.1) calculated on the subset 𝐵:

Loss(𝐵; 𝛼, 𝛽) :=
∑
𝑖∈𝐵

(
𝑌𝑖 −

𝑀∑
𝑚=1

𝛽′𝑚𝑋𝑖𝑚(𝛼𝑚)
)

2

+ pen(𝛼, 𝛽;�).

In other words, every time we take a small step in the direc-

tion opposite to an approximate (or stochastic) version of the

gradient of the loss that we want to minimize. The gradient

designates the direction of parameters towards which the loss

increases the most and the opposite is the direction that the loss

decreases the most.
8

The magnitude of the step is controlled

by the parameter �, which is many times referred to as the

step-size.

In SGD, gradients are computed on subsamples of data (often

consisting of a single observation) called batches, and a single

cycle through all subsamples is termed an "epoch." By only

making use of batches of observations, SGD algorithms are

able to scale to massive data sets. Using subsamples of data

introduces "stochasticity" relative to using the "full" gradient

computed on the entire data. This noise in the computation

of gradients also seems to have advantages in helping SGD

algorithms avoid local saddle points. There are many fine

practical details in terms of efficient computation of gradients

for deep neural nets, how updating is done in SGD algorithms

in general, and in the application of SGD to learning parameters

of deep neural nets.
9

The optimization methods employed for learning neural net-

work parameters provide avenues for regularization beyond

simply penalizing the size of the coefficients. A popular regu-

larization method is dropout regularization where each neuron

in a given layer can be set to zero with a given probability – for

example, .1 – during parameter update steps. Dropout encour-

ages more robust networks: If a particular neuron is important,

the dropout regularization encourages creation of very similar

neurons that can replicate the properties of the given neuron.

Therefore, dropout regularization can be viewed as a penalty

that forces similar weights for groups of neurons.

Another commonly used regularization device used with neural

networks is early stopping. With early stopping, a measure of

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

9 Predictive Inference via Modern Nonlinear Regression 226

10: There has been a flurry of re-

cent research considering the use

of very large neural networks with

many more parameters than the

number of observations that may

easily overfit the data. These papers

find that such highly overparam-

eterized neural networks tend to

find solutions that generalize well,

in the sense of performing well in

predicting out-of-sampel, as long

as they are trained with SGD. See

e.g. [6] for a survey.

out-of-sample prediction accuracy is monitored along with the

value of the in-sample objective function (9.3.1). Rather than

optimizing until the in-sample objective function is minimized,

optimization proceeds until out-of-sample performance appears

to start to degrade. By updating parameters based on in-sample

fit but stopping based on out-of-sample performance, early

stopping helps guard against overfitting.

As can be seen from the preceding paragraphs, using neural

networks in practice relies on the choice of many tuning pa-

rameters. As there is relatively little theoretical guidance on

these choices, tuning parameters are typically chosen using

data splitting. An important choice that clearly relates to model

flexibility is the number of neurons and neuron layers when

considering the deeper networks discussed below. Having more

neurons or layers gives us additional flexibility, just like having

more constructed regressors provides more flexibility in high-

dimensional linear models. Other choices about regularization

then interact with the choice of how many neurons and layers

to use in preventing overfitting.
10

To visualize the working of a neural network, we rely on a

resource called playground.tensorflow.org [7], with which we

produced a prediction regression model using a simple single

layer neural network model based on two input variables. A

screenshot taken after training the model is shown below.

The network depicts the process of taking raw regressors and

transforming them into predicted values. In the second column

https://playground.tensorflow.org/

9 Predictive Inference via Modern Nonlinear Regression 227

11: "Hidden" refers to the fact that

these layers are typically not re-

ported. However, these layers can

be extracted and used as technical

regressors for other tasks. We dis-

cuss using hidden layers as features

in Chapter 11 which deals with fea-

ture engineering.

12: For example, we might be inter-

ested in predicting the price of a

product using product characteris-

tics across multiple markets or time

periods, 𝑡. In treatment effect anal-

ysis, we may build a single neural

network to predict both the out-

come, 𝑌, and the treatment, 𝐷, us-

ing other covariates. We could view

this as a multitask learning prob-

lem where we are interested in two

outputs, 𝑌1 = 𝑌 and 𝑌2 = 𝐷.

(labeled "FEATURES"), we see the inputs – our two raw regres-

sors. The third column depicts a "hidden layer" made up of

eight neurons.
11

Each neuron is constructed as a (weighted)

linear combination of the raw regressors transformed by an

activation function. Here we use the ReLU activation function.

The neurons are connected to the inputs and the connections

represent the �̂�𝑚 coefficients. The coloring represents the sign

of the coefficients (orange is negative and blue positive) and the

width of the connections represents the size of the coefficients.

Finally, the neurons are combined linearly to produce the output

– the prediction rule. The connections going outwards from the

neurons to the output represent the coefficients �̂�𝑚 of the linear

combination of the neurons that produce the final output. The

coloring and the width again represent the sign and the size of

these coefficients.

The output (prediction) is shown here by the "heat" map in the

box on the right. On the horizontal and vertical axes we see the

values of the two inputs. The color and its intensity in the "heat"

map represent the predicted value.

At the top of the screenshot, we also see that we used "L1" for the

type of regularization, which corresponds to using the Lasso

type penalty. Here, the penalty level is called the regularization

rate and is provided as the last entry in the top line of the

screenshot.

In this example, we used a single layer neural network. If we

add one or two additional layers of neurons constructed from

the previous layer of neurons we get a "deep" network. We

illustrate a two-layer network in the following figure.

Prediction methods based on neural networks with several

layers of neurons are called "deep learning" methods.

Deep Neural Networks

Here, we present the structure of a neural network with general

depth. Networks with depth greater than one are called deep

neural networks (DNN).

For the sake of generality, we consider networks of the multitask

form, where we try to predict multiple outputs 𝑌𝑡 , 𝑡 = 1, ..., 𝑇,

where 𝑡 stands for the "task."
12

A typical scenario is to just have

one task, 𝑇 = 1, as in all of our preceding discussion. However,

there are many cases where we can use a single DNN to solve

multiple tasks.

9 Predictive Inference via Modern Nonlinear Regression 228

13: Common architectures employ

activation functions that do not

vary with 𝑘. However, custom ar-

chitectures, such as ResNet50 dis-

cussed in Figure 9.13, can be viewed

as having an activation function

that depends on 𝑘, with some neu-

rons linearly activated and some

non-linearly.

The general nonlinear regression model we work with takes the

form

𝑍
𝑓1↦−→ 𝐻(1)

𝑓2↦−→ ...
𝑓𝑚↦−→ 𝐻(𝑚)

𝑓𝑚+1↦−→ {𝑋 𝑡}𝑇𝑡=1
, (9.3.2)

where

𝐻(ℓ) = {𝐻(ℓ)
𝑘
}𝐾ℓ
𝑘=1

are called neurons, 𝑍 is the original input, and the map 𝑓ℓ maps

one layer of neurons to the next. The maps 𝑓ℓ are defined as

𝑓ℓ : 𝑣 ↦−→ {𝐻(ℓ)
𝑘
(𝑣)}𝐾ℓ

𝑘=1
:= (1, {𝜎𝑘,ℓ (𝑣′𝛼𝑘,ℓ)}𝐾ℓ𝑘=2

), (9.3.3)

where 𝜎𝑘,ℓ is the activation function that can vary with the layer

ℓ and across neurons 𝑘 in a given layer. We always include a

constant of 1 as a component of 𝑍, and we always designate

one of the neurons in each layer up to 𝑚 to be 1. The final layer,

𝑓𝑚+1, does not output the constant of 1 as a component:
13

𝑓𝑚+1 : 𝑣 ↦−→ {𝑋 𝑡(𝑣)}𝑇𝑡=1
:= ({𝜎𝑡 ,𝑚+1(𝑣′𝛼𝑡 ,ℓ)}𝑇𝑡=1

). (9.3.4)

9 Predictive Inference via Modern Nonlinear Regression 229

Figure 9.11: Standard Architecture of a Deep Neural Network. The input is mapped nonlinearly into the first hidden

layer of the neurons. The output of this first mapping is then mapped nonlinearly into the second layer. This process

is then repeated 𝑚 times. The output of the penultimate layer is finally mapped (linearly or nonlinearly) into the

output layer, which can have multiple outputs corresponding to different tasks.

Figure 9.12: Approximation of

𝑔(𝑍) = exp(4𝑍) by a Neural Net-

work

The network mapping (9.3.2) consists of repeated composition

of nonlinear mappings. This structure has been shown to be an

extremely powerful tool for generating flexible functional forms

which yields successful approximations in a wide range of em-

pirical problems and is backed by approximation theory. Good

approximations can be achieved by both considering sufficiently

many neurons and sufficiently many layers (Yarotsky, 2017 [8];

Schmidt-Hieber, 2020 [9]; Farrell et. al, 2021 [10]; Kidger and

Lyons, 2020 [11]). In empirical economic examples, it is common

to just use a few hidden layers, while much deeper networks

are typically used in image processing and text applications.

Similarly to single layer neural networks, the DNN model can

be trained by minimizing the loss function

min

�∈N

∑
𝑡

𝑤𝑡
∑
𝑖

(𝑌𝑡𝑖 − 𝑋
𝑡
𝑖 (�))

2 + pen(�;�), (9.3.5)

where � denotes all of the parameters of the mapping

𝑍𝑖 ↦→ 𝑋 𝑡
𝑖 (�),

𝑤𝑡 denotes the weight given to a task 𝑡, and pen(�;�) is a

penalty function with � denoting the penalty level.

9 Predictive Inference via Modern Nonlinear Regression 230

14: A more general definition al-

lows 𝛽 to be non-integer, but we

focus on integer 𝛽 for simplicity.

15: For instance, suppose that

𝛽 = 1, i.e. the function is

simply assumed to have a uni-

formly bounded first-order deriva-

tive. Moreover, suppose that we

have 𝑑 = 10 variables. Then the

bound says that if we want an error

of 𝜖 = 0.1, we need 𝑛 to be such

that 𝑛−1/12 ≈ 0.1, equivalently we

need 𝑛 ≈ 10
12 = 1 trillion samples!

If 𝛽 = 2, we would only need a

petty 10 million samples...

9.4 Prediction Quality of Modern

Nonlinear Regression Methods

As we have already mentioned, the best prediction rule for an

outcome 𝑌 using features/regressors 𝑍 is the function 𝑔(𝑍),
equal to the conditional expectation of 𝑌 using 𝑍:

𝑔(𝑍) = E[𝑌 | 𝑍].

Modern nonlinear regression methods, when appropriately

tuned and under some regularity conditions, provide estimated

prediction rules �̂�(𝑍) that approximate the best prediction rule

𝑔(𝑍)well.

Theoretical work demonstrates that under appropriate regular-

ity conditions and with appropriate choices of tuning parame-

ters, the mean squared approximation error of prediction rules

produced by modern nonlinear regression methods is small

once the sample size 𝑛 is sufficiently large, namely,

∥ �̂� − 𝑔∥𝐿2(𝑍) =
√

E𝑍[(�̂�(𝑍) − 𝑔(𝑍))2] → 0, as 𝑛 →∞,

where E𝑍 denotes the expectation taken over 𝑍, holding every-

thing else fixed. To deliver these guarantees in high-dimensional

settings where the number of features is large, we rely on struc-

tured assumptions, such as sparsity in the case of Lasso. Under

these conditions we expect that the in-sample MSE and 𝑅2

would agree with the out-of-sample MSE and 𝑅2
.

Learning Guarantees of DNNs

We say that a function 𝑔 : ℝ𝑑 → ℝ is 𝛽-smooth if it has 𝛽 ≥ 1

continuous and uniformly bounded higher-order derivatives.
14

If the regression function 𝑔 is only known to be 𝛽-smooth, then

the best estimator of this function has estimation error, in the

worst case, that converges at the rate

𝑛−𝛽/(2𝛽+𝑑),

as shown by Charles Stone [12]. When 𝑑 is not small, this rate

of convergence is extremely slow, suggesting that learning a

function in 𝑑 variables is difficult if the dimension 𝑑 is moderate

and the target function is only known to be 𝛽-smooth.
15

We can achieve better rates of convergence under some kind

of structured sparsity or parsimony assumptions as we saw

9 Predictive Inference via Modern Nonlinear Regression 231

16: See also [13] for more recent the-

oretical developments on provable

guarantees for neural networks un-

der sparsity conditions.

in the rates for high-dimensional linear models in Chapter 3.

DNNs are able to take advantage of a nonlinear form of sparsity

assumptions that we formulate below following Schmidt-Hieber

[9].
16

Assumption 9.4.1 (Structured Sparsity of Regression Func-

tion) We assume that 𝑔 is generated as a composition of 𝑞 + 1

vector-valued functions:

𝑔 = 𝑓𝑞 ◦ . . . ◦ 𝑓0

where the 𝑖-th function 𝑓𝑖

𝑓𝑖 : ℝ𝑑𝑖 → ℝ𝑑𝑖+1 ,

has each of its 𝑑𝑖+1 components 𝛽𝑖-smooth and depends only on 𝑡𝑖
variables, where 𝑡𝑖 can be much smaller than 𝑑𝑖 .

The rate guarantee will depend on the parsimony/smoothness

pairs:

(𝑡𝑖 , 𝛽𝑖) , 𝑖 = 0, . . . , 𝑞.

For example, consider 𝑔 : ℝ100 ↦→ ℝ,

𝑔 (𝑥1, 𝑥2, 𝑥3, 𝑥4, ..., 𝑥100) = 𝑓1 (𝑓01 (𝑥3) , 𝑓02 (𝑥2)) .

Then

𝑔0 = 𝑓1 ◦ 𝑓0; 𝑑0 = 100, 𝑑1 = 2; 𝑡0 = 1, 𝑡1 = 2.

Theorem 9.4.1 (Learning Guarantee for DNNs under Ap-

proximate Sparsity) Suppose that (a) the regression function 𝑔
obeys the structured sparsity assumption (Assumption 9.4.1); (b)
the depth of the DNN model is proportional to log 𝑛, (c) the width
of the DNN model is no less than

𝑠 · log 𝑛

where 𝑠 is the effective dimension of the regression function 𝑔,

𝑠 := max

𝑖=0,...,𝑞
𝑛

𝑡𝑖
2𝛽𝑖+𝑡𝑖 ;

and (d) other regularity conditions hold as specified in [9]. Then,
there exists a sparse DNN estimator �̂� with order 𝑠 log 𝑛 non-zero

9 Predictive Inference via Modern Nonlinear Regression 232

17: Comparing to our earlier nu-

merical example that made no spar-

sity assumptions, here we see that

irrespective of the number of input

variables, if we want the error to

be 𝜖 = 0.1, then we need 𝑛 ≈ 1000

samples, which is more realistic.

18: Continuous regressors can also

be discretized. However, discretiza-

tion entails some loss of generality,

and approximation properties fol-

lowing discretization have not been

formally investigated.

parameters such that, with probability approaching 1,

∥ �̂� − 𝑔∥𝐿2(𝑍) ≤ constP𝜎

√
𝑠

𝑛
polylog(𝑛),

where polylog(𝑛) is a polynomial in log(𝑛), 𝜎2 = E[(𝑌− 𝑔(𝑍))2],
and constP is a constant that depends on the distribution of the
data.

This fundamental result is due to Schmidt-Hieber [9], where the

reader may find the complete statement of regularity conditions

and further technical details of the result.

In the example above, despite the high-dimensional setting,

𝑑 = 100, if 𝑓01, 𝑓02, 𝑓11 are 𝛽-smooth with 𝛽 ≥ 2, a sparse DNN

is able to achieve the rate (ignoring logs):
17√

𝑠

𝑛
= 𝑛−𝛽/(2𝛽+2) ≤ 𝑛−1/3

where the effective dimension is

𝑠 = 𝑛
2

2𝛽+2 .

Learning Guarantees of Trees and Forests

One important property of adaptively built trees is that they

are able to identify the relevant dimensions along which the

regression function varies. To isolate this type of behavior of

trees and forests, we consider a setting where all the regressors

are binary, i.e. 𝑍 ∈ {0, 1}𝑑. This is without loss of generality for

categorical (discrete-valued) regressors, since each level of the

regressor can be coded as a binary indicator.
18

Without further assumptions on the regression function 𝑔 :

{0, 1}𝑑 → ℝ, the best convergence rates that one could hope for

scale at least at a

√
2
𝑑/𝑛 rate. Even for a moderate number of

variables 𝑑, this rate of convergence can be prohibitively slow.

Adaptively built trees are particularly successful when there

is only a small subset 𝑆, of size |𝑆 | = 𝑟, among the 𝑑 vari-

ables that is relevant. Using this principle, we can formulate

a non-parametric analogue of the sparsity assumption that

we analyzed in the case of high-dimensional linear regression

with Lasso that allows us to improve on the convergence rate

obtained without restrictions.

9 Predictive Inference via Modern Nonlinear Regression 233

19: This relaxation has not been for-

mally investigated.

20: An "honest" training approach

makes use of subsampling. See The-

orem 9.4.3 and the discussion im-

mediately preceding its statement.

Assumption 9.4.2 (Nonparametric Sparsity of a Regression

Function with Binary Regressors) We assume that there exists a
subset 𝑆 of size |𝑆 | = 𝑟, such that the function 𝑔 can be written as
a function of only the variables in 𝑆; i.e. we can write

𝑔(𝑍) = 𝑓 (𝑍𝑆)

where 𝑍𝑆 is the subvector of 𝑍 containing only the coordinates in
𝑆.

The assumption can probably be relaxed to "approximate"

sparsity.
19

Observe that, unlike the sparsity assumption we made in the

case of high-dimensional penalized linear regression, Assump-

tion 9.4.2 imposes no restrictions on the form of the function

𝑓 that takes as input the relevant variables. Here, under the

nonparametric sparsity assumption together with several other

regularity conditions, we can prove that the mean squared

approximation error of shallow regression trees or "honest" and

arbitrarily deep regression forests
20

scales at a√
2
𝑟

log(𝑑) log(𝑛)/𝑛

rate. Thus, the convergence rate depends strongly on the sparsity

level 𝑟 while the overall number of regressors 𝑑 enter only loga-

rithmically. Moreover, even if we knew the relevant variables 𝑆,

we could not hope for a rate faster than

√
2
𝑟/𝑛 since we make

no further assumptions on the function 𝑓 . Thus not knowing

the relevant set of regressors 𝑆 adds an extra multiplicative cost

on the achievable rate that only grows logarithmically with the

number of regressors and the sample size. See [14] for results of

similar flavor for variants of regression trees in settings beyond

the binary regressor case.

Theorem 9.4.2 (Learning Guarantee for Shallow Regression

Trees) Suppose that (a) the regressors are binary and the outcome
variable is bounded; (b) the regression function 𝑔 obeys Assumption
9.4.2; (c) regularity conditions hold that lower bound the density
of the support of the distribution of covariates and upper bound
the degree of variance reduction in MSE that can be achieved by
features not in 𝑆 [15]. Then a regression tree estimator �̂�, where the
regression tree is greedily grown A greedy algorithm is any algo-

rithm that follows the problem-

solving heuristic of making the lo-

cally optimal choice at each stage.

In our case, a greedily grown tree

optimizes over the name of regres-

sor and splitting point that achieve

the best one-step improvement in

the in-sample MSE at each node.

based on the MSE criterion up to
a depth that is at least 𝑟 and at most some constant multiple of 𝑟,

9 Predictive Inference via Modern Nonlinear Regression 234

satisfies, for 𝑛 ≥ constP2
𝑟

log(𝑑/𝛿), with probability 1 − 𝛿,

∥ �̂� − 𝑔∥𝐿2(𝑍) ≤ constP𝜎

√
2
𝑟

log(𝑑/𝛿) log(𝑛)
𝑛

,

where 𝜎2 = E[(𝑌 − 𝑔(𝑍))2] and constP is a constant that depends
on the distribution of the data.

Capping the depth of the regression tree as in Theorem 9.4.2

helps avoid overfitting, since otherwise we could potentially

construct binary trees that achieve zero error on the training

data and have large error out-of-sample.

An alternative to avoiding overfitting is to use an ensemble ap-

proach based on sub-sampled data. To implement an ensemble

approach, we train multiple regression trees, each on a random

sub-sample (without replacement) of the original data-set of

size 𝑠 < 𝑛 and average the predictions of each of these trees.

Moreover, to formally argue about the approximation error

of such sub-sampled forests, we will require the forests to be

trained in an "honest" manner.

In our setting, an honest training approach is as follows: When

we train a tree on a sub-sample, we randomly partition the data

in half and we use half of the data to find the best splits in a

greedy manner, and the other half of the data to construct the

estimates at each node of the tree. Such sub-sampled honest

forests have been recently popularized by the work of [16].

Subsequent work of [15] showed that honest forests provably

adapt to non-parametric sparsity of the regression function.

Theorem 9.4.3 (Learning Guarantee for Sub-Sampled Honest

Forests) Suppose that (a) the regressors are binary and outcome
variable is bounded; (b) the regression function 𝑔 obeys Assumption
9.4.2; (c) regularity conditions hold that lower bound the density
of the support of the distribution of covariates and upper bound
the degree of variance reduction in MSE that can be achieved by
features not in 𝑆 [15]. Then a regression forest estimator �̂�, where
each regression tree is built in an honest manner and on a random
sub-sample (without replacement) of size 𝑠 = constP 2

𝑟
log(𝑑/𝛿)

of the original data, satisfies, for 𝑛 ≥ constP 2
𝑟

log(𝑑/𝛿) with
probability 1 − 𝛿,

∥ �̂� − 𝑔∥𝐿2(𝑍) ≤ constP𝜎

√
2
𝑟

log(𝑑/𝛿) polylog(𝑛)
𝑛

where 𝜎2 = E[(𝑌 − 𝑔(𝑍))2] and constP is a constant that depends
on the distribution of the data and polylog(𝑛) is a polynomial factor

9 Predictive Inference via Modern Nonlinear Regression 235

21: Irrelevance here only means

that, given the set 𝑆 of relevant co-

variates, the other variables do not

contribute to the best prediction

rule. It does not mean that the irrel-

evant covariates have no predictive

power on their own.

of log(𝑛).

The rate guarantee for Honest Forests in Theorem 9.4.3 is the

same as the rate for shallow trees in Theorem 9.4.2. This theory

thus does not shed light on why random forests seem to achieve

superior predictive performance over simple trees in many

applications. Moreover, practical random forest algorithms

tend to work well with default tuning choices, whereas the

theory requires a careful alignment of the tuning parameters to

get good rate guarantees. The regularity conditions also require

the explanatory power of the subset of the covariates that are

relevant, 𝑆, to dominate the explanatory power of the irrelevant

covariates.
21

This condition on signal strength is a sufficient

condition, but it may not be necessary for good performance.

That is, there seem to remain substantial gaps in our theoretical

understanding of the performance of tree-based algorithms.

Further exploring these properties may be an interesting area

for further study.

Trust but Verify

Both tree-based methods and neural networks provide powerful,

flexible models that can deliver high-quality approximations of

regression functions. However, the high degree of flexibility can

lead to overfitting. Therefore, it is always important to verify

the performance on test data to make sure that the predictive

model being used is actually a good one.

A simple verification procedure is data splitting, which can be

performed in the following way:

1. We use a random subset of data for estimating/training

the prediction rule.

2. We use the other part of the data to evaluate the quality

of the prediction rule, recording out-of-sample mean

squared error, 𝑅2
, or some other desired measure of

prediction quality.

Recall that the part of the data used for estimation is called

the training sample. The part of the data used for evaluation

is called the testing or validation sample. We have a data

sample containing observations on outcomes𝑌𝑖 and features 𝑍𝑖 .

Suppose we use 𝑛 observations for training and 𝑚 for testing/

validation. We use the training sample to compute prediction

rule �̂�(𝑍). Let 𝑉 denote the indices of the observations in the

9 Predictive Inference via Modern Nonlinear Regression 236

22: In typical empirical applica-

tions, these quantities are calcu-

lated after de-meaning/centering

the outcome.

test sample. Then the out-of-sample/test mean squared error

is

MSE𝑡𝑒𝑠𝑡 =
1

𝑚

∑
𝑘∈𝑉
(𝑌𝑘 − �̂�(𝑍𝑘))2.

The out-of-sample/test 𝑅2
is

22

𝑅2

𝑡𝑒𝑠𝑡 = 1 − MSE𝑡𝑒𝑠𝑡

1

𝑚

∑
𝑘∈𝑉 𝑌

2

𝑘

.

A Simple Case Study using Wage Data

We illustrate ideas using a data set of 5150 observations from

the March Current Population Survey Supplement 2015. 𝑌𝑖’s

are log wages of never-married workers living in the U.S. 𝑍𝑖’s

include experience, education, 23 industry and 22 occupation

indicators, and some other characteristics. We consider a variety

of linear and nonlinear rules for predicting 𝑌 with 𝑍.

For the linear models, we estimate prediction rules of the form

�̂�(𝑍) = �̂�′𝑋 using 𝑋 generated in two ways:

▶ (basic model) 𝑋 consists of the 51 raw regressors in 𝑍.

▶ (flexible model) 𝑋 consists of 246 variables composed

of the 51 raw regressor in 𝑍, a fourth order polynomial

in experience, and two-way interactions between the

polynomial terms in experience and the non-experience

variables in 𝑍.

We estimate �̂� by linear regression/least squares and by the

following penalized regression methods: Lasso and Post-Lasso

with plug-in choice of �, cross-validated Lasso, Ridge, and

Elastic Net.

For the nonlinear models, we estimate prediction rules of the

form �̂�(𝑍) without imposing that �̂�(𝑍) = �̂�′𝑋. That is, we

do not assume prediction rules to be linear. We estimate the

prediction models by random forests, regression trees, boosted

trees, and Neural Networks. We use an implementation of

the random forest where, at the step of growing a regression

tree, we choose the best variable to split upon among

√
𝑝 ≪ 𝑝

randomly selected variables.

Table 9.1 displays results based upon a single split of data into

training and testing sets. It shows the test MSE in column 1,

the standard error of the test MSE in column 2, and the test 𝑅2

in column 3. We see that the best performing prediction rules

are provided by OLS using the raw 51 regressors and Lasso

using the basic 51 predictors with penalty parameter selected by

9 Predictive Inference via Modern Nonlinear Regression 237

MSE S.E. 𝑅2

Least Squares (basic) 0.229 0.016 0.282

Least Squares (flexible) 0.243 0.016 0.238

Lasso 0.234 0.015 0.267

Post-Lasso 0.233 0.015 0.271

Lasso (flexible) 0.235 0.015 0.265

Post-Lasso (flexible) 0.236 0.016 0.261

Cross-Validated Lasso 0.229 0.015 0.282

Cross-Validated Ridge 0.234 0.015 0.267

Cross-Validated Elastic Net 0.230 0.015 0.280

Cross-Validated Lasso (flexible) 0.232 0.015 0.275

Cross-Validated Ridge (flexible) 0.233 0.015 0.271

Cross-Validated Elastic Net (flexible) 0.231 0.015 0.276

Random Forest 0.233 0.015 0.270

Boosted Trees 0.230 0.015 0.279

Pruned Tree 0.248 0.016 0.224

Neural Net 0.276 0.012 0.148

Table 9.1: Prediction Performance

for the Test/Validation Sample.

cross-validation. The performance of both Elastic Net with the

basic set of regressors and boosted trees are also nearly identical

to those of the two best methods. Looking at standard errors,

we see that the vast majority of methods have test MSE’s that

are within one standard error of the best test MSE, suggesting

relatively little difference in performance across methods.

The outliers, in terms of performing relatively poorly, are OLS

using the flexible set of covariates as well as the regression tree

(Pruned Tree) and the neural net. OLS with the flexible set of

predictors uses a relatively large number of variables relative

to the sample size and seems likely to be overfit. On the other

hand, neither the regression tree nor the neural net is fully

tuned. Thus, there may be room to improve the performance of

these methods.

9.5 Combining Predictions - Aggregation

- Ensemble Learning

Given different prediction rules, we can choose either a single

method or an aggregation of several methods as our prediction

approach. An aggregated prediction is a linear combination of

the basic predictors. In econometrics and statistics, the

procedures for combining several

methods are called "model averag-

ing" and "aggregation." In machine

learning, these terms are relabeled

as "ensembles" and "stacking."

Specifically, we consider an aggregated prediction rule of the

9 Predictive Inference via Modern Nonlinear Regression 238

form:

�̃�(𝑍) =
𝐾∑
𝑘=1

�̃�𝑘 �̂�𝑘(𝑍),

where �̂�𝑘 ’s denote basic predictors, potentially including a

constant. The basic predictors are computed on the training

data.

If the number of prediction rules, 𝐾, is small, we can figure

out the coefficients of the optimal linear combination of the

rules, �̃�𝑘 , using test data 𝑉 by simply running least squares

of the outcomes in the test data on their associated predicted

values:

min

(𝛼𝑘)𝐾𝑘=1

∑
𝑖∈𝑉

(
𝑌𝑖 −

𝐾∑
𝑘=1

𝛼𝑘 �̂�𝑘(𝑍𝑖)
)

2

.

We wish to emphasize that here we are minimizing the sum of

squared prediction errors in the test sample using the prediction

rules from the training sample as the regressors. If 𝐾 is large,

we can instead use Lasso for aggregation:

min

(𝛼𝑘)𝐾𝑘=1

∑
𝑖∈𝑉

(
𝑌𝑖 −

𝐾∑
𝑘=1

𝛼𝑘 �̂�𝑘(𝑍𝑖)
)

2

+ �
𝐾∑
𝑘=1

|𝛼𝑘 |.

Aggregation Results for the Case Study

We consider the prediction rules based on OLS, Post-Lasso,

Elastic Net, Pruned Tree, random forest and boosted trees to

build an ensemble method.

Weight OLS Weight Lasso

Constant -0.162 -0.147

Least Squares (basic) 0.281 0.293

Post-Lasso (flexible) 0.237 0.223

CV Elastic Net (flexible) -0.068 -0.056

Pruned Tree -0.140 0.000

Random Forest 0.377 0.344

Boosted Trees 0.367 0.245

Table 9.2: Weights of the ensemble

method.

The estimated weights are shown in Table 9.2. The adjusted 𝑅2

for the test sample gets improved by about 1%.

9 Predictive Inference via Modern Nonlinear Regression 239

Auto ML Frameworks

There are a variety of new frameworks emerging that do auto-

mated search and aggregation of different prediction methods.

These automatic aggregation procedures use approaches like

the one we outlined above or other heuristics. Example imple-

mentations of automatic aggregation methods include H20,

AutoML [17], Auto Gluon [18] (which relies on Neural Nets),

Auto-Sklearn, Hyperopt-Sklearn and FLAML.

We’ve tried H20 on the wage data. It produced a model that

beats OLS with the basic predictor set, which gave a test MSE

of 0.229, by producing a test MSE of 0.21. (The difference is

not statistically significant.) H20 is similar to the ensemble

method that we constructed above. The performance was very

impressive because we gave H20 a time budget of just 100

seconds!

9.6 When Do Neural Networks Win?

The wage example may give a pessimistic impression on the

power of deep learning (and machine learning more generally).

A more optimistic impression emerges from examining per-

formance of deep learning in data-rich settings, where large

samples and rich features are available.

A recent example comes from Bajari et al. (2021) [19]. Here we

are interested in predicting prices of products given their char-

acteristics, which include both text and images. The resulting

predictions are called hedonic prices. In this example, neural

networks (specifically BERT [20] and ResNet50 [21]) are first

used to convert the text and image data into several thousand-

dimensional numerical features 𝑋 (called embeddings). The features produced in the penul-

timate layer in a deep neural net-

work are often referred to as embed-

dings as they encode or "embed"

the information from the previous

layers that is directly used in pro-

ducing the final predictions. In the

case of hedonic pricing, we may

refer to these features as "value em-

beddings" as the final target is price

or value of the product.

These

features extracted from the text and image data are then used as

input variables in a deep neural network for predicting product

prices. The deep neural network used in the example consists of

3 hidden layers, with the penultimate layer consisting of about

400 neurons.

The data set used in this example is larger than 10 million

observations. The accuracy of prediction for the deep neural

network described above, as measured by the 𝑅2
on the test

sample, is about 90%. In contrast, random forests applied to

predict prices using the text and image embeddings as inputs

deliver an 𝑅2
in the test sample that is in the ballpark of 80%,

and a linear model estimated via least squares that uses the

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://auto.gluon.ai/stable/index.html
https://automl.github.io/auto-sklearn/master/
https://hyperopt.github.io/hyperopt-sklearn/
https://microsoft.github.io/FLAML/

9 Predictive Inference via Modern Nonlinear Regression 240

text and image embeddings as predictor variables delivers an

𝑅2
in the test sample of only around 70%. Ignoring the neural

network embeddings of the text and image data and using only

simple catalog features, the 𝑅2
is lower than 40%.

We will discuss further details of generating embeddings in

Chapter 11.

Figure 9.13: The structure of the predictive model in Bajari et al. (2021) [19]. The input consists of images and

unstructured text data. The first step of the process creates the moderately high-dimensional numerical embeddings

𝐼 and 𝑊 for images and text data via state-of-the art deep learning methods, such as ResNet50 and BERT. The

second step of the process takes as input 𝑋 = (𝐼 ,𝑊) and creates predictions for hedonic prices 𝐻𝑡(𝑋) using deep

learning methods with a multi-task structure. The models of the first step are trained on tasks unrelated to predicting

prices (e.g., image classification or word prediction), where embeddings are extracted as hidden layers of the neural

networks. The models of the second step are trained by price prediction tasks. The multitask price prediction network

creates an intermediate lower dimensional embedding𝑉 = 𝑉(𝑋), called value embedding and then predicts the final

prices in all time periods {𝐻𝑡(𝑉), 𝑡 = 1, ..., 𝑇}. Some variations of the method include fine-tuning the embeddings

produced by the first step to perform well for price prediction tasks (i.e. optimizing the embedding parameters so as

to minimize price prediction loss).

9.7 Closing Notes

To sum up, we have discussed assessment of predictive perfor-

mance of modern linear and non-linear regression methods

using splitting of data into training and testing samples. The

results could be used to pick the best prediction rule generated

by the classical or modern regression methods or to aggregate

prediction rules into an ensemble rule, which can result in some

improvements. We illustrated these ideas using the wage data

from the 2015 Current Population Survey. We finally introduced

Auto ML frameworks and commented that Neural Networks

perform best in very data-rich settings.

9 Predictive Inference via Modern Nonlinear Regression 241

Notebooks

▶ Python Notebook on ML-based Prediction of Wages and

R Notebook on ML-based Prediction of Wages provide

details of implementation of penalized regression, re-

gression trees, random forest, boosted tree and neural

network methods, a comparison of various methods and

a way to choose the best method or create an ensemble of

methods. Moreover, they provide an application of the

FLAML (Python) and H2O (R) AutoML framework to the

wage prediction problem. With a small time budget, both

FLAML and H2O found the model that worked best for

predicting wages.

▶ Python Notebook on Approximation of a Function by

Random Forest and Neural Network and R Notebook

on Approximation of a Function by Random Forest and

Neural Network illustrate the flexibility of these methods

in approximating the function exp(4𝑥).

Additional resources

▶ Andrej Karpathy [22] ’s Recipe for Training Neural Net-

works provides a good workflow and practical tips for

training good neural network models.

▶ For practical details of tree-based methods, please see

Hastie et al. [23] ’s book "Introduction to Statistical Learn-

ing".

▶ For an in-depth treatment of deep learning, see Zhang’s

et al. [24] ’s book "Dive Into Deep Learning", Goodfel-

low et al. [4] "Deep Learning", and Nielsen [25] "Neural

Networks and Deep Learning".

Notes

Many of the formative developments in modern nonlinear

regression were led by the statistics and artificial intelligence

communities. The methods were rebranded as machine learning

in the 90s, and learning with neural networks was rebranded

as deep learning when it was realized that deep network archi-

tectures produced phenomenal results in image classification

(and later in natural language processing tasks). The success

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/python-nonlinear-ml-for-wage-prediction.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/r_ml_wage_prediction.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/python-functional-approximation-by-nn-and-rf.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/python-functional-approximation-by-nn-and-rf.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/r_functional_approximation_by_nn_and_rf.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/r_functional_approximation_by_nn_and_rf.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM3/r_functional_approximation_by_nn_and_rf.irnb
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/
https://www.statlearning.com/
https://www.statlearning.com/
https://d2l.ai
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

9 Predictive Inference via Modern Nonlinear Regression 242

of deep neural networks was a breakthrough associated with

advances in both computing power and the ability to collect

very large data sets. See the textbooks mentioned above for

in-depth treatments of deep learning.

In Chapter 10, we will study the use of the machine learning and

deep learning for statistical inference on causal and predictive

effects in high-dimensional nonlinear regression settings; and

in Chapter 11, we’ll be using deep learning for engineering

features from text and data (e.g. using images and product

descriptions as "regressors").

Study Problems

1. Use two paragraphs to explain to a friend how one of the

tree-based strategies works.

2. Use two paragraphs to explain to a friend how a basic

neural network works.

3. Experiment with one of the empirical notebooks provided

and summarize your findings. For example, try to see if

you can build a better performing neural network in the

wage example. One possibility is to use custom models

in Keras, where we can construct a partially linear model

that borrows the strength of the basic linear model and

corrects it slightly with a nonlinear deviation function.

4. Experiment with the last (non-empirical) notebook. See,

for example, if you can find a (much) simpler neural

network that provides the same quality of fit as the

current example in the notebook.

9.A Variable Importance via

Permutations

There are many ways of assessing variable importance in non-

linear models. A very simple one is the following permutation

method.

The importance of variable 𝑗 in any machine learning algorithm

(linear or nonlinear) can be defined by computing the loss in pre-

dictive performance that results from replacing the observations

https://cloud.r-project.org/web/packages/keras/vignettes/custom_models.html
https://cloud.r-project.org/web/packages/keras/vignettes/custom_models.html

9 Predictive Inference via Modern Nonlinear Regression 243

of the 𝑗-th feature (𝑍 𝑗𝑖)𝑛𝑖=1
with their random permutation

(𝑍 𝑗𝜋(𝑖))𝑛𝑖=1
,

where 𝜋 : {1, ..., 𝑛} → {1, ..., 𝑛} is a permutation map, gen-

erated at random. The loss is averaged over many random

permutations, to obtain an average loss measure 𝐿 𝑗 . Then the

variables are ranked in terms of 𝐿 𝑗 , from largest to smallest. The

top-ranked variables are the most important ones. This idea,

that appeared in the original paper by L. Breiman [3], mimics

the situation where the permuted regressor is an irrelevant

predictor having the same marginal distribution as the observed

regressor.

Bibliography

[1] Leo Breiman. ‘Statistical modeling: The two cultures’.

In: Statistical science 16.3 (2001), pp. 199–231 (cited on

page 215).

[2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.

The Elements of Statistical Learning. Vol. 1. Springer series

in statistics New York, 2001 (cited on page 219).

[3] Leo Breiman. ‘Random forests’. In: Machine learning 45.1

(2001), pp. 5–32 (cited on pages 220, 243).

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning. http://www.deeplearningbook.org.

MIT Press, 2016 (cited on pages 225, 241).

[5] Lili Jiang. A Visual Explanation of Gradient Descent Methods
(Momentum, AdaGrad, RMSProp, Adam). 2020. url: https:

//towardsdatascience.com/a-visual-explanation-

of-gradient-descent-methods-momentum-adagrad-

rmsprop-adam-f898b102325c (visited on 04/03/2022)

(cited on page 225).

[6] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin.

‘Deep learning: a statistical viewpoint’. In: Acta Numerica
30 (2021), pp. 87–201 (cited on page 226).

[7] playground.tensorflow.org.https://playground.tensorflow.

org/. Accessed: 2022-04-03 (cited on page 226).

[8] Dmitry Yarotsky. ‘Error bounds for approximations with

deep ReLU networks’. In: Neural Networks 94 (2017),

pp. 103–114 (cited on page 229).

[9] Johannes Schmidt-Hieber. ‘Nonparametric regression us-

ing deep neural networks with ReLU activation function’.

In: Annals of Statistics 48.4 (2020), pp. 1875–1897 (cited on

pages 229, 231, 232).

[10] Max H. Farrell, Tengyuan Liang, and Sanjog Misra. ‘Deep

Neural Networks for Estimation and Inference’. In: Econo-
metrica 89.1 (2021), pp. 181–213 (cited on page 229).

[11] Patrick Kidger and Terry Lyons. ‘Universal Approxima-

tion with Deep Narrow Networks’. In: Proceedings of
Thirty Third Conference on Learning Theory. Ed. by Jacob

Abernethy and Shivani Agarwal. Vol. 125. Proceedings of

Machine Learning Research. PMLR, 2020, pp. 2306–2327

(cited on page 229).

http://www.deeplearningbook.org
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://playground.tensorflow.org/
https://playground.tensorflow.org/

Bibliography 245

[12] Charles J. Stone. ‘Optimal global rates of convergence

for nonparametric regression’. In: Annals of statistics 10.4

(1982), pp. 1040–1053 (cited on page 230).

[13] Rahul Parhi and Robert D Nowak. ‘Deep Learning Meets

Sparse Regularization: A Signal Processing Perspective’.

In: arXiv preprint arXiv:2301.09554 (2023) (cited on page 231).

[14] Stefan Wager and Guenther Walther. ‘Adaptive concen-

tration of regression trees, with application to random

forests’. In: arXiv preprint arXiv:1503.06388 (2015) (cited

on page 233).

[15] Vasilis Syrgkanis and Manolis Zampetakis. ‘Estimation

and Inference with Trees and Forests in High Dimensions’.

In: Proceedings of Thirty Third Conference on Learning Theory.

Ed. by Jacob Abernethy and Shivani Agarwal. Vol. 125.

Proceedings of Machine Learning Research. PMLR, 2020,

pp. 3453–3454 (cited on pages 233, 234).

[16] Stefan Wager and Susan Athey. ‘Estimation and Infer-

ence of Heterogeneous Treatment Effects using Random

Forests’. In: Journal of the American Statistical Association
113.523 (2018), pp. 1228–1242 (cited on page 234).

[17] Erin LeDell and Sebastien Poirier. ‘H2o automl: Scalable

automatic machine learning’. In: Proceedings of the AutoML
Workshop at ICML. Vol. 2020. 2020 (cited on page 239).

[18] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang

Zhang, Pedro Larroy, Mu Li, and Alexander Smola.

‘Autogluon-tabular: Robust and accurate automl for struc-

tured data’. In: arXiv preprint arXiv:2003.06505 (2020)

(cited on page 239).

[19] Patrick L. Bajari, Zhihao Cen, Victor Chernozhukov,

Manoj Manukonda, Jin Wang, Ramon Huerta, Junbo

Li, Ling Leng, George Monokroussos, Suhas Vĳaykunar,

et al. Hedonic prices and quality adjusted price indices powered
by AI. Tech. rep. cemmap working paper, 2021 (cited on

pages 239, 240).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. ‘Bert: Pre-training of deep bidirectional trans-

formers for language understanding’. In: arXiv preprint
arXiv:1810.04805 (2018) (cited on page 239).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. ‘Deep residual learning for image recognition’. In:

Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778 (cited on page 239).

Bibliography 246

[22] Andrej Karpathy. A Recipe for Training Neural Networks.
2019. url: http://karpathy.github.io/2019/04/25/

recipe/ (visited on 04/06/2022) (cited on page 241).

[23] Gareth James, Daniela Witten, Trevor Hastie, and Robert

Tibshirani. An introduction to statistical learning. Springer,

2013 (cited on page 241).

[24] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J.

Smola. ‘Dive into deep learning’. In: URL: https://d2l. ai
(2020) (cited on page 241).

[25] Michael A. Nielsen. Neural networks and deep learning.

Determination Press, 2015 (cited on page 241).

http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/

